Quantum machine learning-using quantum computation in artificial intelligence and deep neural networks: Quantum computation and machine learning in artificial intelligence

Author(s):  
Sayantan Gupta ◽  
Subhrodip Mohanta ◽  
Mayukh Chakraborty ◽  
Souradeep Ghosh
2021 ◽  
Author(s):  
Anwaar Ulhaq

Machine learning has grown in popularity and effectiveness over the last decade. It has become possible to solve complex problems, especially in artificial intelligence, due to the effectiveness of deep neural networks. While numerous books and countless papers have been written on deep learning, new researchers want to understand the field's history, current trends and envision future possibilities. This review paper will summarise the recorded work that resulted in such success and address patterns and prospects.


In the first wave of artificial intelligence (AI), rule-based expert systems were developed, with modest success, to help generalists who lacked expertise in a specific domain. The second wave of AI, originally called artificial neural networks but now described as machine learning, began to have an impact with multilayer networks in the 1980s. Deep learning, which enables automated feature discovery, has enjoyed spectacular success in several medical disciplines, including cardiology, from automated image analysis to the identification of the electrocardiographic signature of atrial fibrillation during sinus rhythm. Machine learning is now embedded within the NHS Long-Term Plan in England, but its widespread adoption may be limited by the “black-box” nature of deep neural networks.


2020 ◽  
Author(s):  
Pedro Guimarães ◽  
Andreas Keller ◽  
Michael Böhm ◽  
Lucas Lauder ◽  
José L. Ayala ◽  
...  

AbstractBackgroundTo develop and validate a novel, machine learning-derived model for prediction of cardiovascular (CV) mortality risk using office (OBP) and ambulatory blood pressure (ABP), to compare its performance with existing risk scores, and to assess the possibility of predicting ABP phenotypes (i.e. white-coat, ambulatory and masked hypertension) utilizing clinical variables.MethodsUsing data from 63,910 patients enrolled in the Spanish ABP monitoring registry, machine-learning approaches (logistic regression, support vector machine, gradient boosted decision trees, and deep neural networks) and stepwise forward feature selection were used for the classification of the data.ResultsOver a median follow-up of 4.7 years, 3,808 deaths occurred from which 1,295 were from CV causes. The performance for all tested classifiers increased while adding up to 10 features and converged thereafter. For the prediction of CV mortality, deep neural networks yielded the highest clinical performance. The novel mortality prediction models using OBP (CV-MortalityOBP) and ABP (CV-MortalityABP) outperformed all other risk scores. The area under the curve (AUC) achieved by the novel approach, using OBP variables only, was already significantly higher when compared with the AUC of Framingham score (0.685 vs 0.659, p = 1.97×10−22), the SCORE (0.679 vs 0.613, p = 6.21×10−22), and ASCVD (0.722 vs 0.639, p = 8.03×10−30) risk score. However, prediction of CV mortality with ABP instead of OBP data led to a significant increase in AUC (0.781 vs 0.752, p = 1.73×10−42), accuracy, balanced accuracy and sensitivity. The sensitivity and specificity for detection of ambulatory, masked, and white-coat hypertension ranged between 0.653-0.661 and 0.573-0.651, respectively.ConclusionWe developed a novel risk calculator for CV death using artificial intelligence based on a large cohort of patients included in the Spanish ABP monitoring registry. The receiver operating characteristic curves for CV-MortalityOBP and CV-MortalityABP with deep neural networks models outperformed all other risk metrics. Prediction of CV mortality using ABP data led to a significant increase in performance metrics. The prediction of ambulatory phenotypes using clinical characteristics, including OBP, was limited.


2021 ◽  
Vol 9 (5) ◽  
pp. 33-43
Author(s):  
Ashraf Nabil ◽  
Ayman Kassem

Autonomous Driving is one of the difficult problems faced the automotive applications. Nowadays, it is restricted due to the presence of some laws that prevent cars from being fully autonomous for the fear of accidents occurrence. Researchers try to improve the accuracy and safety of their models with the aim of having a strong push against these restricted Laws. Autonomous driving is a sought-after solution which isn’t easily solved by classical approaches. Deep Learning is considered as a strong Artificial Intelligence paradigm which can teach machines how to behave in difficult situations. It proved its success in many differ domains, but it still has sometime in the automotive applications. The presented work will use the end-to-end deep machine learning field in order to reach to our goal of having Full Autonomous Driving Vehicle that can behave correctly in different scenarios. CARLA simulator will be used to learn and test the deep neural networks. Results will show not only performance on CARLA’s simulator as an end-to-end solution for autonomous driving, but also how the same approach can be used on one of the most popular real datasets of automotive that includes camera images with the corresponding driver’s control action.


2020 ◽  
Vol 3 ◽  
Author(s):  
Frank Emmert-Streib ◽  
Olli Yli-Harja ◽  
Matthias Dehmer

The field artificial intelligence (AI) was founded over 65 years ago. Starting with great hopes and ambitious goals the field progressed through various stages of popularity and has recently undergone a revival through the introduction of deep neural networks. Some problems of AI are that, so far, neither the “intelligence” nor the goals of AI are formally defined causing confusion when comparing AI to other fields. In this paper, we present a perspective on the desired and current status of AI in relation to machine learning and statistics and clarify common misconceptions and myths. Our discussion is intended to lift the veil of vagueness surrounding AI to reveal its true countenance.


Author(s):  
Semra Erpolat Taşabat ◽  
Olgun Aydin

Deep learning (DL) is a rising star of machine learning (ML) and artificial intelligence (AI) domains. Until 2006, many researchers had attempted to build deep neural networks (DNN), but most of them failed. In 2006, it was proven that deep neural networks are one of the most crucial inventions for the 21st century. Nowadays, DNN are being used as a key technology for many different domains: self-driven vehicles, smart cities, security, automated machines. In this chapter, brief information about DL theory is given, advantages and disadvantages of deep learning are discussed, most used types of DNN are mentioned, popular DL architectures and frameworks are glanced and aimed to build smart systems for the finance and real estate domains. Finally, a case study about image recognition using transfer learning is developed.


2020 ◽  
Vol 12 (22) ◽  
pp. 9707
Author(s):  
Sergiu Cosmin Nistor ◽  
Tudor Alexandru Ileni ◽  
Adrian Sergiu Dărăbant

Machine learning is a branch of artificial intelligence that has gained a lot of traction in the last years due to advances in deep neural networks. These algorithms can be used to process large quantities of data, which would be impossible to handle manually. Often, the algorithms and methods needed for solving these tasks are problem dependent. We propose an automatic method for creating new convolutional neural network architectures which are specifically designed to solve a given problem. We describe our method in detail and we explain its reduced carbon footprint, computation time and cost compared to a manual approach. Our method uses a rewarding mechanism for creating networks with good performance and so gradually improves its architecture proposals. The application for the algorithm that we chose for this paper is segmentation of eyeglasses from images, but our method is applicable, to a larger or lesser extent, to any image processing task. We present and discuss our results, including the architecture that obtained 0.9683 intersection-over-union (IOU) score on our most complex dataset.


2021 ◽  
Vol 11 (15) ◽  
pp. 6704
Author(s):  
Jingyong Cai ◽  
Masashi Takemoto ◽  
Yuming Qiu ◽  
Hironori Nakajo

Despite being heavily used in the training of deep neural networks (DNNs), multipliers are resource-intensive and insufficient in many different scenarios. Previous discoveries have revealed the superiority when activation functions, such as the sigmoid, are calculated by shift-and-add operations, although they fail to remove multiplications in training altogether. In this paper, we propose an innovative approach that can convert all multiplications in the forward and backward inferences of DNNs into shift-and-add operations. Because the model parameters and backpropagated errors of a large DNN model are typically clustered around zero, these values can be approximated by their sine values. Multiplications between the weights and error signals are transferred to multiplications of their sine values, which are replaceable with simpler operations with the help of the product to sum formula. In addition, a rectified sine activation function is utilized for further converting layer inputs into sine values. In this way, the original multiplication-intensive operations can be computed through simple add-and-shift operations. This trigonometric approximation method provides an efficient training and inference alternative for devices with insufficient hardware multipliers. Experimental results demonstrate that this method is able to obtain a performance close to that of classical training algorithms. The approach we propose sheds new light on future hardware customization research for machine learning.


Photonics ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 33
Author(s):  
Lucas Lamata

Quantum machine learning has emerged as a promising paradigm that could accelerate machine learning calculations. Inside this field, quantum reinforcement learning aims at designing and building quantum agents that may exchange information with their environment and adapt to it, with the aim of achieving some goal. Different quantum platforms have been considered for quantum machine learning and specifically for quantum reinforcement learning. Here, we review the field of quantum reinforcement learning and its implementation with quantum photonics. This quantum technology may enhance quantum computation and communication, as well as machine learning, via the fruitful marriage between these previously unrelated fields.


SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A164-A164
Author(s):  
Pahnwat Taweesedt ◽  
JungYoon Kim ◽  
Jaehyun Park ◽  
Jangwoon Park ◽  
Munish Sharma ◽  
...  

Abstract Introduction Obstructive sleep apnea (OSA) is a common sleep-related breathing disorder with an estimation of one billion people. Full-night polysomnography is considered the gold standard for OSA diagnosis. However, it is time-consuming, expensive and is not readily available in many parts of the world. Many screening questionnaires and scores have been proposed for OSA prediction with high sensitivity and low specificity. The present study is intended to develop models with various machine learning techniques to predict the severity of OSA by incorporating features from multiple questionnaires. Methods Subjects who underwent full-night polysomnography in Torr sleep center, Texas and completed 5 OSA screening questionnaires/scores were included. OSA was diagnosed by using Apnea-Hypopnea Index ≥ 5. We trained five different machine learning models including Deep Neural Networks with the scaled principal component analysis (DNN-PCA), Random Forest (RF), Adaptive Boosting classifier (ABC), and K-Nearest Neighbors classifier (KNC) and Support Vector Machine Classifier (SVMC). Training:Testing subject ratio of 65:35 was used. All features including demographic data, body measurement, snoring and sleepiness history were obtained from 5 OSA screening questionnaires/scores (STOP-BANG questionnaires, Berlin questionnaires, NoSAS score, NAMES score and No-Apnea score). Performance parametrics were used to compare between machine learning models. Results Of 180 subjects, 51.5 % of subjects were male with mean (SD) age of 53.6 (15.1). One hundred and nineteen subjects were diagnosed with OSA. Area Under the Receiver Operating Characteristic Curve (AUROC) of DNN-PCA, RF, ABC, KNC, SVMC, STOP-BANG questionnaire, Berlin questionnaire, NoSAS score, NAMES score, and No-Apnea score were 0.85, 0.68, 0.52, 0.74, 0.75, 0.61, 0.63, 0,61, 0.58 and 0,58 respectively. DNN-PCA showed the highest AUROC with sensitivity of 0.79, specificity of 0.67, positive-predictivity of 0.93, F1 score of 0.86, and accuracy of 0.77. Conclusion Our result showed that DNN-PCA outperforms OSA screening questionnaires, scores and other machine learning models. Support (if any):


Sign in / Sign up

Export Citation Format

Share Document