Microstructure evolution at the solder joint during isothermal aging

Author(s):  
A. M. Zetty Akhtar ◽  
K. Hardinna Wirda ◽  
I. Siti Rabiatull Aisha ◽  
I. Mahadzir
2009 ◽  
Vol 49 (9-11) ◽  
pp. 1267-1272 ◽  
Author(s):  
M. Berthou ◽  
P. Retailleau ◽  
H. Frémont ◽  
A. Guédon-Gracia ◽  
C. Jéphos-Davennel

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jianing Wang ◽  
Jieshi Chen ◽  
Zhiyuan Zhang ◽  
Peilei Zhang ◽  
Zhishui Yu ◽  
...  

Purpose The purpose of this article is the effect of doping minor Ni on the microstructure evolution of a Sn-xNi (x = 0, 0.05 and 0.1 wt.%)/Ni (Poly-crystal/Single-crystal abbreviated as PC Ni/SC Ni) solder joint during reflow and aging treatment. Results showed that the intermetallic compounds (IMCs) of the interfacial layer of Sn-xNi/PC Ni joints were Ni3Sn4 phase, while the IMCs of Sn-xNi/SC Ni joints were NiSn4 phase. After the reflow process and thermal aging of different joints, the growth behavior of interfacial layer was different due to the different mechanism of element diffusion of the two substrates. The PC Ni substrate mainly provided Ni atoms through grain boundary diffusion. The Ni3Sn4 phase of the Sn0.05Ni/PC Ni joint was finer, and the diffusion flux of Sn and Ni elements increased, so the Ni3Sn4 layer of this joint was the thickest. The SC Ni substrate mainly provided Ni atoms through the lattice diffusion. The Sn0.1Ni/SC Ni joint increases the number of Ni atoms at the interface due to the doping of 0.1Ni (wt.%) elements, so the joint had the thickest NiSn4 layer. Design/methodology/approach The effects of doping minor Ni on the microstructure evolution of an Sn-xNi (x = 0, 0.05 and 0.1 Wt.%)/Ni (Poly-crystal/Single-crystal abbreviated as PC Ni/SC Ni) solder joint during reflow and aging treatment was investigated in this study. Findings Results showed that the intermetallic compounds (IMCs) of the interfacial layer of Sn-xNi/PC Ni joints were Ni3Sn4 phase, while the IMCs of Sn-xNi/SC Ni joints were NiSn4 phase. After the reflow process and thermal aging of different joints, the growth behavior of the interfacial layer was different due to the different mechanisms of element diffusion of the two substrates. Originality/value In this study, the effect of doping Ni on the growth and formation mechanism of IMCs of the Sn-xNi/Ni (single-crystal) solder joints (x = 0, 0.05 and 0.1 Wt.%) was investigated.


2010 ◽  
Vol 2010 (1) ◽  
pp. 000298-000305
Author(s):  
Tae-Kyu Lee ◽  
Weidong Xie ◽  
Thomas R. Bieler ◽  
Kuo-Chuan Liu ◽  
Jie Xue

The interaction between isothermal aging and long-term reliability of fine pitch ball grid array (BGA) packages with Sn-3.0Ag-0.5Cu (wt%) solder ball interconnects are investigated. In this study, 0.4mm fine pitch packages with 0.3mm diameter Sn-Ag-Cu solder balls are used. Two different die sizes and two different package substrate surface finishes are selected to compare the internal strain impact and alloy effect, especially the Ni effect during thermal cycling. To see the thermal impact on the thermal performance and long-term reliability, the samples are isothermally aged and thermal cycled from 0 to 100°C with a 10minute dwell time. Based on weibull plots for each aging condition, the lifetime of the package reduced approximately 44% with 150°C aging precondition. The microstructure evolution is observed during thermal aging and thermal cycling with different phase microstructure transformations between electrolytic Ni/Au and OSP surface finishes, focusing on the microstructure evolution near the package side interface. Different mechanisms after aging at various conditions are observed, and their impacts on the fatigue life of solder joints are discussed.


Author(s):  
Munshi Basit ◽  
Mohammad Motalab ◽  
Jeffrey C. Suhling ◽  
John L. Evans ◽  
Pradeep Lall

The microstructure, mechanical response, and failure behavior of lead free solder joints in electronic assemblies are constantly evolving when exposed to isothermal aging and/or thermal cycling environments. In our prior work on aging effects, we have demonstrated that the observed material behavior degradations of Sn-Ag-Cu (SAC) lead free solders during room temperature aging (25 C) and elevated temperature aging (50, 75, 100, 125, and 150 C) were unexpectedly large. The measured stress-strain data demonstrated large reductions in stiffness, yield stress, ultimate strength, and strain to failure (up to 50%) during the first 6 months after reflow solidification. In this study, we have used both accelerated life testing and finite element modeling to explore how prior isothermal aging affects the overall reliability of PBGA packages subjected to thermal cycling. In the experimental work, an extensive test matrix of thermal cycling reliability testing has been performed using a test vehicle incorporating several sizes (5, 10, 15, 19 mm) of BGA daisy chain components with 0.4 and 0.8 mm solder joint pitches (SAC305). PCB test boards with 3 different surface finishes (ImAg, ENIG and ENEPIG) were utilized. In this paper, we concentrate on the reporting the results for a PBGA component with 15 mm body size. Before thermal cycling began, the assembled test boards were divided up into test groups that were subjected to several sets of aging conditions (preconditioning) including 0, 6, and 12 months aging at T = 125 °C. After aging, the assemblies were subjected to thermal cycling (−40 to +125 °C) until failure occurred. The Weibull data failure plots have demonstrated that the thermal cycling reliabilities of pre-aged assemblies were significantly less than those of non-aged assemblies. A three-dimensional finite element model of the tested 15 mm PBGA packages was also developed. The cross-sectional details of the solder ball and the internal structure of the BGA were examined by scanning electron microscopy (SEM) to capture the real geometry of the package. Simulations of thermal cycling from −40 to 125 C were performed. To include the effects of aging in the calculations, we have used a revised set of Anand viscoplastic stress-strain relations for the SAC305 Pb-free solder material that includes material parameters that evolve with the thermal history of the solder material. The accumulated plastic work (energy density dissipation) was used is the failure variable; and the Darveaux approach to predict crack initiation and crack growth was applied with aging dependent parameters to estimate the fatigue lives of the studied packages. We have obtained good correlation between our new reliability modeling procedure that includes aging and the measured solder joint reliability data. As expected from our prior studies on degradation of SAC material properties with aging, the reliability reductions were more severe for higher aging temperature and longer aging times.


2008 ◽  
Vol 48 (11-12) ◽  
pp. 1864-1874 ◽  
Author(s):  
Jeong-Won Yoon ◽  
Bo-In Noh ◽  
Young-Ho Lee ◽  
Hyo-Soo Lee ◽  
Seung-Boo Jung

2006 ◽  
Vol 417 (1-2) ◽  
pp. 143-149 ◽  
Author(s):  
Yanghua Xia ◽  
Xiaoming Xie ◽  
Chuanyan Lu ◽  
Junling Chang

2016 ◽  
Vol 700 ◽  
pp. 123-131 ◽  
Author(s):  
Rita Mohd Said ◽  
Mohd Arif Anuar Mohd Salleh ◽  
Mohd Nazree Derman ◽  
Mohd Izrul Izwan Ramli ◽  
Norhayanti Mohd Nasir ◽  
...  

This work investigated the effects of 1.0 wt. % TiO2 particles addition into Sn-Cu-Ni solder paste to the growth of the interfacial intermetallic compound (IMC) on Cu substrate after isothermal aging. Sn-Cu-Ni solder paste with TiO2 particles were mechanically mixed to fabricate the composite solder paste. The composite solder paste then reflowed in the reflow oven to form solder joint. The reflowed samples were then isothermally aged 75, 125 and 150 ° C for 24 and 240 h. It was found that the morphology of IMCs changed from scallop-shape to a more uniform planar shape in both Sn-Cu-Ni/Cu joints and Sn-Cu-Ni-TiO2 /Cu joint. Cu6Sn5 and Cu3Sn IMC were identified and grew after prolong aging time and temperature. The IMCs thickness and scallop diameter of composite solder paste were reduced and the growth of IMCs thickness after isothermal aging become slower as compared to unreinforced Sn-Cu-Ni solder paste. It is suggested that TiO2 particles have influenced the evolution and retarded the growth of interfacial IMCs.


Sign in / Sign up

Export Citation Format

Share Document