An On-line Browse/quicklook Facility For Earth Observation Image Data

Author(s):  
R.J. Proud ◽  
M. Polley ◽  
D. Cleden ◽  
M. Readhead
Keyword(s):  
Data ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 94 ◽  
Author(s):  
Steve Kopp ◽  
Peter Becker ◽  
Abhijit Doshi ◽  
Dawn J. Wright ◽  
Kaixi Zhang ◽  
...  

Earth observation imagery have traditionally been expensive, difficult to find and access, and required specialized skills and software to transform imagery into actionable information. This has limited adoption by the broader science community. Changes in cost of imagery and changes in computing technology over the last decade have enabled a new approach for how to organize, analyze, and share Earth observation imagery, broadly referred to as a data cube. The vision and promise of image data cubes is to lower these hurdles and expand the user community by making analysis ready data readily accessible and providing modern approaches to more easily analyze and visualize the data, empowering a larger community of users to improve their knowledge of place and make better informed decisions. Image data cubes are large collections of temporal, multivariate datasets typically consisting of analysis ready multispectral Earth observation data. Several flavors and variations of data cubes have emerged. To simplify access for end users we developed a flexible approach supporting multiple data cube styles, referencing images in their existing structure and storage location, enabling fast access, visualization, and analysis from a wide variety of web and desktop applications. We provide here an overview of that approach and three case studies.


2018 ◽  
Vol 7 (6) ◽  
pp. 365-376 ◽  
Author(s):  
Dennis Dolkens ◽  
Hans Kuiper ◽  
Victor Villalba Corbacho

Abstract The increase of spatial and temporal resolution for Earth observation (EO) is the ultimate driver for science and societal applications. However, the state-of-the-art EO missions like DigitalGlobe’s Worldview-3, are very costly. Moreover, this system has a high mass of 2800 kg and limited swath width of about 15 km which limits the temporal resolution. In this article, we present the status of the deployable space telescope (DST) project, which has been running for 6 years now at the Delft University of Technology, as a cutting-edge solution to solve this issue. Deployable optics have the potential of revolutionising the field of high resolution EO. By splitting up the primary mirror (M1) of a telescope into deployable segments and placing the secondary mirror (M2) on a deployable boom, the launch volume of a telescope can be reduced by a factor of 4 or more, allowing for much lower launch costs. This allows for larger EO constellations, providing image data with a much better revisit time than existing solutions. The DST specification baseline, based on Wordview-3, aims to provide images with a ground resolution of 25 cm (panchromatic 450–650 nm) from an orbital altitude of 500 km. In this paper, the current status of the optical, thermo-mechanical, and active optics systems design are described. The concurrent design approach combined with a strict bottom-up and top-down compliant systems engineering approach show that the DST is a healthy system concept.


2020 ◽  
Vol 8 (S1) ◽  
pp. S26-S42 ◽  
Author(s):  
Roberto Interdonato ◽  
Raffaele Gaetano ◽  
Danny Lo Seen ◽  
Mathieu Roche ◽  
Giuseppe Scarpa

AbstractNowadays, modern Earth Observation systems continuously generate huge amounts of data. A notable example is the Sentinel-2 Earth Observation mission, developed by the European Space Agency as part of the Copernicus Programme, which supplies images from the whole planet at high spatial resolution (up to 10 m) with unprecedented revisit time (every 5 days at the equator). In this data-rich scenario, the remote sensing community is showing a growing interest toward modern supervised machine learning techniques (e.g., deep learning) to perform information extraction, often underestimating the need for reference data that this framework implies. Conversely, few attention is being devoted to the use of network analysis techniques, which can provide a set of powerful tools for unsupervised information discovery, subject to the definition of a suitable strategy to build a network-like representation of image data. The aim of this work is to provide clues on how Satellite Image Time Series can be profitably represented using complex network models, by proposing a methodology to build a multilayer network from such data. This is the first work to explore the possibility to exploit this model in the remote sensing domain. An example of community detection over the provided network in a real-case scenario for the mapping of complex land use systems is also presented, to assess the potential of this approach.


2013 ◽  
Vol 401-403 ◽  
pp. 1158-1161
Author(s):  
Jing Chao ◽  
Zhan Feng Liu ◽  
Yan Shu Liu

In order to improve the measurement accuracy of thread parameter and can realize the automatic measurement of parameter, this paper propose a non-contact measuring method which is based on machine vision, we use the industrial linear array CCD with high-precision scan the projection of the thread which in the field of parallel light, using the image recognition, image acquisition, image data processing technology enable your computer finish the pitch diameter, thread pitch, tooth type angle on a non-contact of real-time, on-line measurement. This article also provides detailed measuring method with the main parameters of thread.


2019 ◽  
Vol 1 ◽  
pp. 1-2
Author(s):  
Kwangseob Kim ◽  
Kiwon Lee

<p><strong>Abstract.</strong> Data cube terms a multi-dimensional stack of gridded datasets aligned for analysis. Open Data Cube (ODC) is an open-source based information processing and managing platform on the viewpoint from web-based infrastructure. This open platform is for a large volume of geo-spatial information with geo-rectified coordinates, and it has been applied by non-profit international organizations such as the Committee on Earth Observation Satellites (CEOS) for an international coordination and management of space-borne missions, Global Earth Observation System of Systems (GEOSS) in the Group on Earth Observations (GEO), as an intergovernmental organization to improve the applicability, accessibility and usability of Earth observations for benefit of human society.</p><p>The building of Analysis Ready Data (ARD), which means the preparation of radiometric calibration and geo-rectification, is for the data cube utilization. The platform converts large-scale satellite image data into analytic information, providing functions for time series analysis. Internationally, there has been an ever-increasing number of country-based data cube deployments with freely available satellite images, including Australia Data Cube, Vietnam Data Cube, Swiss Data Cube, and Colombia Data Cube, as a computing environment for information distribution, sharing, and analysis.</p><p>However, there is no program yet to register Korea Multi-purpose satellite (KOMPSAT) optical and radar images on this platform, so this study developed the registering and ingestion script codes for KOMPSAT optical and radar image sets into ODC. Data ingestion is the process of obtaining and importing data for immediate use or storage in a database. Thus, an ingestion process is required to add satellite data to the ODC platform and the process can be divided into three main stages in Figure 1. First, it is to define the data type in the YAML format. Then, the indexing process of datasets for metadata registration is necessary. The next step is a data ingestion process that users can be used directly data sets collected in ODC.</p><p>Figure 2 shows some of the Python module results for index datasets and the process of metadata generation. The metadata YAML, which is required for indexing, has many advantages in many respects in the creation of metadata through Python modules. This is why we added Python modules to create metadata YAML. In particular, the KOMPSAT data ingestion process was designed so that all of them were possible through one module.</p><p>Using script modules for these steps, the functional accuracy was tested with actual satellite data. Color composite images using RGB bands of KOMPSAT optical images were generated in the ODC environment in Figure 3. In this process, image data formats of GeoTiff and netCDF are also supported.</p><p>In this study, consideration points for implementation of ODC applications are also discussed. KOMPSAT data is basically commercial-based products, unlike other freely accessible satellite images in the ODC applications. For the practical contribution for ODC-GEOSS, careful considerations for data policy are needed, because it can be applied as a reference model for other commercial satellite data for GEOSS.</p>


2015 ◽  
Vol 3 (0) ◽  
pp. 17 ◽  
Author(s):  
Dimitrios Triantakonstantis ◽  
Nektarios Chrysoulakis ◽  
Anna Sazonova ◽  
Thomas Esch ◽  
Christian Feigenwinter ◽  
...  

2013 ◽  
Vol 6 (2) ◽  
pp. 185-195 ◽  
Author(s):  
Nitant Dube ◽  
R. Ramakrishnan ◽  
K.S. Dasgupta

2020 ◽  
Vol 10 (16) ◽  
pp. 5616 ◽  
Author(s):  
Yuning Chen ◽  
Ji Lu ◽  
Renjie He ◽  
Junwei Ou

Earth observation satellites (EOSs) are taking a large number of pictures with increasing resolution which produce massive image data. Satellite data transmission becomes the bottleneck part in the process of EOS resource management. In this paper, we study the earth observation satellite integrated scheduling problem (EOSIS) where the imaging activities and download activities are considered integratively. We propose an integer linear programming model to formulate the problem. Due to the NP-hardness of the problem, we propose an efficient local search heuristic (ELSH) to solve problems of large size. ELSH uses a dedicated local search method to guarantee algorithm performance and efficient constraint handling mechanisms to guarantee algorithm efficiency. Numerical experimental results show that the algorithm demonstrates excellent performance on a set of benchmark instances. The ELSH achieves optimal results for all small-size instances (with 50 targets, two satellites, and three ground stations), and is very robust for large instances with up to 2000 targets. Moreover, the proposed ELSH easily dominates the state-of-the-art algorithm.


Sign in / Sign up

Export Citation Format

Share Document