Daily global solar radiation estimate in the South Korea based on geostationary satellite remote sensing

Author(s):  
Sang-il Na ◽  
Shin-cheol Baek ◽  
Jin-ki Park ◽  
Jong-hwa Park
2020 ◽  
Author(s):  
NaKyeong Kim ◽  
Suho Bak ◽  
Minji Jeong ◽  
Hongjoo Yoon

<p><span>A sea fog is a fog caused by the cooling of the air near the ocean-atmosphere boundary layer when the warm sea surface air moves to a cold sea level. Sea fog affects a variety of aspects, including maritime and coastal transportation, military activities and fishing activities. In particular, it is important to detect sea fog as they can lead to ship accidents due to reduced visibility. Due to the wide range of sea fog events and the lack of constant occurrence, it is generally detected through satellite remote sensing. Because sea fog travels in a short period of time, it uses geostationary satellites with higher time resolution than polar satellites to detect fog. A method for detecting fog by using the difference between 11 μm channel and 3.7 μm channel was widely used when detecting fog by satellite remote sensing, but this is difficult to distinguish between lower clouds and fog. Traditional algorithms are difficult to find accurate thresholds for fog and cloud. However, machine learning algorithms can be used as a useful tool to determine this. In this study, based on geostationary satellite imaging data, a comparative analysis of sea fog detection accuracy was conducted through various methods of machine learning, such as Random Forest, Multi-Layer Perceptron, and Convolutional Neural Networks.</span></p>


2018 ◽  
pp. 1357-1364
Author(s):  
Carolina Souza Leite de Jesus ◽  
Rafael Coll Delgado ◽  
Marcos Gervásio Pereira ◽  
Leonardo Paula de Souza ◽  
Carlos Antonio da Silva Junior ◽  
...  

2013 ◽  
Vol 39 (2) ◽  
pp. 59-63
Author(s):  
Ebenezer Yemi Ogunbadewa

Climatic variability affects both seasonal phenological cycles of vegetation and monthly distribution of rainfall in the south western Nigeria. Variations in vegetation biophysical parameters have been known to be a good indicator of climate variability; hence they are used as key inputs into climate change models. However, understanding the response of vegetation to the influence of climate at both temporal and spatial scales have been a major challenge. This is because most climatic data available are derived from ground-based instruments, which are mainly point measurements and are characterized by sparse network of meteorological stations that lacks the spatial coverage required for climate change investigation. Satellite remote sensing instruments can provide a suitable alternative of time-reliable datasets in a more consistent manner at both temporal and spatial scales. The aim of this study is to test the suitability of one year time series datasets obtained from satellite sensor and meteorological stations as a starting point for the development of a climate change model that can be exploited in planning adaptation strategies. Taking into consideration that rainfall is the most variable element of climate in the study area, rainfall data acquired from five meteorological stations for the year 2006 were correlated with changes in Normalized Difference Vegetation Index (NDVI) derived from Moderate Resolution Imaging Spectroradiometer (MODIS)/Terra satellite sensor for the same period using a linear regression equation. The results shows that rainfall–NDVI relationship was stronger along the seasonal track with R2 ranging from 0.74 to 0.94, indicating that NDVI seasonal variations can be used as a surrogate data source for monitoring climate change for short and long term scales ranging from regional to global magnitude especially in areas where data availability from ground-based measurements are unreliable.


Sign in / Sign up

Export Citation Format

Share Document