Study of doubly clamped piezoelectric beam energy harvesters with non-traditional geometries

Author(s):  
Richik Kashyap ◽  
Trupti Ranjan Lenka ◽  
Srimanta Baishya
2019 ◽  
Vol 30 (15) ◽  
pp. 2299-2313 ◽  
Author(s):  
Peyman Hajheidari ◽  
Ion Stiharu ◽  
Rama Bhat

Cantilever-based piezoelectric energy harvesters have been utilized as structures to extract mechanical energy from the ambient mechanical vibrations and transfer it into the electrical output. In this article, the performance of bimorph piezoelectric beam energy harvesters is investigated. The cantilever beam is modeled by using both Timoshenko and Euler–Bernoulli beam theories. The equations are discretized using the conventional finite element method and superconvergent element. Besides the high rate of convergence, easy switching between the above beam theories is enabled by such type of element. The current model is presented for a Timoshenko beam model, but it could as well be used for a Euler–Bernoulli beam model. In addition, voltage, current, and power frequency response functions for different ranges of load resistance varying from the short-circuit to open-circuit conditions are determined to reach the maximum values. Effects of the slenderness ratio and the required beam model based on the geometric properties of the piezoelectric energy harvesters are discussed in the final part of this study. The results show that only for smaller values of the slenderness ratio (below 5), it is necessary to model the beam using the Timoshenko assumptions; otherwise both beam theories provide approximately the same responses.


Author(s):  
M. H. Ansari ◽  
M. Amin Karami

A three dimensional piezoelectric vibration energy harvester is designed to generate electricity from heartbeat vibrations. The device consists of several bimorph piezoelectric beams stacked on top of each other. These horizontal bimorph beams are connected to each other by rigid vertical beams making a fan-folded geometry. One end of the design is clamped and the other end is free. One major problem in micro-scale piezoelectric energy harvesters is their high natural frequency. The same challenge is faced in development of a compact vibration energy harvester for the low frequency heartbeat vibrations. One way to decrease the natural frequency is to increase the length of the bimorph beam. This approach is not usually practical due to size limitations. By utilizing the fan-folded geometry, the natural frequency is decreased while the size constraints are observed. The required size limit of the energy harvester is 1 cm by 1 cm by 1 cm. In this paper, the natural frequencies and mode shapes of fan-folded energy harvesters are analytically derived. The electro-mechanical coupling has been included in the model for the piezoelectric beam. The design criteria for the device are discussed.


Author(s):  
Ming Hui Yao ◽  
Cai Xia Ma ◽  
Wei Zhang ◽  
Dong Xing Cao

In this paper, cantilevered beam with piezoelectric layers are considered as the mechanical model of vibration energy harvesters. This paper aims to investigate the complicated dynamics behavior of the nonlinear vibrations of the cantilevered piezoelectric beam. The base excitation on the harvester beam is assumed to be harmonic load. Based on the third-order shear deformation theory and the Hamilton’s principle, the nonlinear equations of motion for the cantilevered piezoelectric beam are derived. The Galerkin’s approach is employed to discretize the partial differential equations to the ordinary differential equations with one-degree-of-freedom. The method of multiple scales is used to obtain the averaged equations in the polar form. Based on the actual work situation of the cantilevered piezoelectric beam, it is known that the base excitation plays an important role in the nonlinear vibration of the cantilevered piezoelectric beam. From the averaged equations obtained, numerical simulations are presented to investigate the effects of parameters on the steady-state responses of the cantilevered piezoelectric beam. We analyze the influences of the excitation magnitude, the excitation frequency, the piezoelectric material parameter and the damping parameter on the steady-state responses of the cantilevered piezoelectric beam. In addition, it is observed that the base excitation has significant influence on the nonlinear dynamical behavior of the cantilevered piezoelectric beam.


Author(s):  
Dennis J. Tweten ◽  
Brian P. Mann

This paper describes the application of the harmonic balance parameter identification method to beam energy harvesters. The method is applied to weakly nonlinear and nonlinear, bistable fixed-free piezoelectric beams with tip masses. It is shown that only one measurement is required to identify parameters even though the systems are continuous. In addition, an experimental method of determining the number of restoring force coefficients required to accurately model the systems is presented. The harmonic balance parameter identification method is extended to account for multiple concurrent frequencies in order to identify parameters of weakly nonlinear systems. Finally, parameters are identified for two experimental energy harvesters. Good agreement is shown between the experimental data and the identified parameters using simulations and closed form solutions.


2019 ◽  
Vol 141 (3) ◽  
Author(s):  
Xinlei Fu ◽  
Wei-Hsin Liao

Nonharmonic excitations are widely distributed in the environment. They can work as energy sources of vibration energy harvesters for powering wireless electronics. To overcome the narrow bandwidth of linear vibration energy harvesters, plucking piezoelectric energy harvesters have been designed. Plucking piezoelectric energy harvesters can convert sporadic motions into plucking force to excite vibration energy harvesters and achieve broadband performances. Though different kinds of plucking piezoelectric energy harvesters have been designed, the plucking mechanism is not well understood. The simplified models of plucking piezoelectric energy harvesting neglect the dynamic interaction between the plectrum and the piezoelectric beam. This research work is aimed at investigating the plucking mechanism and developing a comprehensive model of plucking piezoelectric energy harvesting. In this paper, the dynamic plucking mechanism is investigated and the Hertzian contact theory is applied. The developed model of plucking piezoelectric energy harvesting accounts for the dynamic interaction between the plectrum and the piezoelectric beam by considering contact theory. Experimental results show that the developed model well predicts the responses of plucking piezoelectric energy harvesters under different plucking velocities and overlap lengths. Parametric studies are conducted on the dimensionless model after choosing appropriate scaling. The influences of plucking velocity and overlap length on energy harvesting performance and energy conversion efficiency are discussed. The comprehensive model helps investigate the characteristics and guide the design of plucking piezoelectric energy harvesters.


Author(s):  
Emmanuel Beltramo ◽  
Balakumar Balachandran ◽  
Sergio Preidikman

In this paper, the authors introduce a model of a strain-based geometrically nonlinear piezoelectric beam for modeling energy harvesters. A nonlinear shear-underfomable 3-D Rayleigh’s beam theory is used to model the displacement fields and can be considered as an interesting alternative to linear and highly nonlinear models commonly presented in the literature. The nonlinearities are introduced to reproduce the behavior of the flexible structure, since moderate to large displacements can occur in response of external loading conditions. The finite element method is used to model the piezolaminated bimorph configuration. Each finite element consists of two piezoelectric energy harvesters embedded or perfectly bonded to an elastic substrate. The electromechanical coupling includes axial and flexural effects as well as additional term that comes from the nonlinearity incorporated into the strain tensor. Additionally, the authors explore briefly two topics for linear harvesters: the influence of the electric domain on the structural properties and, the performance of the harvester near resonance in term of electric power output of a purely resistive network. As a validation case, a cantilevered piezoelectric energy harvester under base excitation is modeled. Alongside, the response to gust of a harvester embedded in a wing structure is analyzed.


2016 ◽  
Vol 100 ◽  
pp. 109-114 ◽  
Author(s):  
Alwyn D.T. Elliott ◽  
Lindsay M. Miller ◽  
Einar Halvorsen ◽  
Paul K. Wright ◽  
Paul D. Mitcheson

Manufacture of piezoelectric energy harvesters typically assumes bulk piezoelectric material for the transducer until the reduction in size of the device prevents this. However when designing piezoelectric harvesters, the complete system must be taken into account including the transducer, power circuit, and battery, as these will impose restrictions on what can be achieved. Therefore a comparison between MEMS and meso-scale piezoelectric energy harvesting systems using a fully parametrised model is required. The comparison was restricted to a piezoelectric beam with a mass at the end connected to a single supply pre-biasing circuit to provide the optimal damping force and rectification. A buck converter was used to transfer extracted energy to a 1.5V battery. The results indicate that for devices with a volume side length less than 16.25 mm, no device using meso-scale properties can be made to resonant at 100 Hz or less due to the length and stiffness of the beam. Whereas above this limit, the voltage required to damp devices with MEMS scale properties causes a breakdown in the dielectric. We present a comparison of the theoretical limits of MEMS and meso-scale piezoelectric harvesters to provide design insight for future devices to maximise power generation.


Sign in / Sign up

Export Citation Format

Share Document