Reliability and Failure Mechanism of Current-Stressed 99.3Sn-0.7Cu/96.5Sn-3Ag-0.5Cu Composite Flip-Chip Solder Joints with Cu or Au/Ni/Cu Substrate Pad Metallization

Author(s):  
Ying-Ta Chiu ◽  
Yu-Hsiu Shao ◽  
Yi-Shao Lai
2002 ◽  
Vol 31 (11) ◽  
pp. 1256-1263 ◽  
Author(s):  
Fan Zhang ◽  
Ming Li ◽  
Bavani Balakrisnan ◽  
William T. Chen

2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Yi-Shao Lai ◽  
Ying-Ta Chiu ◽  
Chiu-Wen Lee

Designed experiments were conducted in this paper to study the effect of Au/Ni/Cu or Cu substrate pad metallization on the electromigration reliability of 96.5Sn–3Ag–0.5Cu flip-chip solder joints with Ti/Ni(V)/Cu under bump metallurgy (UBM) under a current stressing condition with an average current density of around 5 kA/cm2 at an ambient temperature of 150°C. Cross-sectional observations on current-stressed solder joints indicate that although Cu metallization results in severe voiding compared with Au/Ni/Cu metallization on the substrate side of the solder joint, the dominant failure has been identified as UBM consumption, and test vehicles with Cu metallization exhibit better electromigration reliability than those with Au/Ni/Cu metallization. The stronger durability against current stressing for test vehicles with Cu metallization may attribute to the lower UBM consumption rate due to the continuous Cu diffusion toward UBM as a result of the concentration gradient. The consumption of UBM is faster for test vehicles with Au/Ni/Cu metallization because Cu diffusion from the substrate pad is retarded by the Ni barrier.


2011 ◽  
Vol 99 (8) ◽  
pp. 082114 ◽  
Author(s):  
Tian Tian ◽  
Feng Xu ◽  
Jung Kyu Han ◽  
Daechul Choi ◽  
Yin Cheng ◽  
...  

1998 ◽  
Vol 515 ◽  
Author(s):  
S. Wiese ◽  
F. Feustel ◽  
S. Rzepka ◽  
E. Meusel

ABSTRACTThe paper presents crack propagation experiments on real flip chip specimens applied to reversible shear loading. Two specially designed micro testers will be introduced. The first tester provides very precise measurements of the force displacement hysteresis. The achieved resolutions have been I mN for force and 20 nm for displacement. The second micro tester works similar to the first one, but is designed for in-situ experiments inside the SEM. Since it needs to be very small in size it reaches only resolutions of 10 mN and 100nm, which is sufficient to achieve equivalence to the first tester. A cyclic triangular strain wave is used as load profile for the crack propagation experiment. The experiment was done with both machines applying equivalent specimens and load. The force displacement curve was recorded using the first micro mechanical tester. From those hysteresis, the force amplitude has been determined for every cycle. All force amplitudes are plotted versus the number of cycles in order to quantify the crack length. With the second tester, images were taken at every 10th … 100th cycle in order to locate the crack propagation. Finally both results have been linked together for a combined quatitive and spatial description of the crack propagation in flip chip solder joints.


2006 ◽  
Vol 89 (22) ◽  
pp. 221906 ◽  
Author(s):  
Fan-Yi Ouyang ◽  
K. N. Tu ◽  
Yi-Shao Lai ◽  
Andriy M. Gusak

Sign in / Sign up

Export Citation Format

Share Document