scholarly journals A new COVID-19 medical image steganography based on dual encrypted data insertion into minimum mean intensity window of LSB of X-ray scans

Author(s):  
Subhaluxmi Sahoo ◽  
Sony Snigdha Sahoo
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Michael Rutherford ◽  
Seong K. Mun ◽  
Betty Levine ◽  
William Bennett ◽  
Kirk Smith ◽  
...  

AbstractWe developed a DICOM dataset that can be used to evaluate the performance of de-identification algorithms. DICOM objects (a total of 1,693 CT, MRI, PET, and digital X-ray images) were selected from datasets published in the Cancer Imaging Archive (TCIA). Synthetic Protected Health Information (PHI) was generated and inserted into selected DICOM Attributes to mimic typical clinical imaging exams. The DICOM Standard and TCIA curation audit logs guided the insertion of synthetic PHI into standard and non-standard DICOM data elements. A TCIA curation team tested the utility of the evaluation dataset. With this publication, the evaluation dataset (containing synthetic PHI) and de-identified evaluation dataset (the result of TCIA curation) are released on TCIA in advance of a competition, sponsored by the National Cancer Institute (NCI), for algorithmic de-identification of medical image datasets. The competition will use a much larger evaluation dataset constructed in the same manner. This paper describes the creation of the evaluation datasets and guidelines for their use.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 885
Author(s):  
Vasile Berinde ◽  
Cristina Ţicală

The aim of this paper is to show analytically and empirically how ant-based algorithms for medical image edge detection can be enhanced by using an admissible perturbation of demicontractive operators. We thus complement the results reported in a recent paper by the second author and her collaborators, where they used admissible perturbations of demicontractive mappings as test functions. To illustrate this fact, we first consider some typical properties of demicontractive mappings and of their admissible perturbations and then present some appropriate numerical tests to illustrate the improvement brought by the admissible perturbations of demicontractive mappings when they are taken as test functions in ant-based algorithms for medical image edge detection. The edge detection process reported in our study considers both symmetric (Head CT and Brain CT) and asymmetric (Hand X-ray) medical images. The performance of the algorithm was tested visually with various images and empirically with evaluation of parameters.


Author(s):  
Karthik K ◽  
Sowmya S Kamath

Abstract The detailed physiological perspectives captured by medical imaging provides actionable insights to doctors to manage comprehensive care of patients. However, the quality of such diagnostic image modalities is often affected by mismanagement of the image capturing process by poorly trained technicians and older/poorly maintained imaging equipment. Further, a patient is often subjected to scanning at different orientations to capture the frontal, lateral and sagittal views of the affected areas. Due to the large volume of diagnostic scans performed at a modern hospital, adequate documentation of such additional perspectives is mostly overlooked, which is also an essential key element of quality diagnostic systems and predictive analytics systems. Another crucial challenge affecting effective medical image data management is that the diagnostic scans are essentially stored as unstructured data, lacking a well-defined processing methodology for enabling intelligent image data management for supporting applications like similar patient retrieval , automated disease prediction etc. One solution is to incorporate automated diagnostic image descriptions of the observation/findings by leveraging computer vision and natural language processing. In this work, we present multi-task neural models capable of addressing these critical challenges. We propose ESRGAN, an image enhancement technique for improving the quality and visualization of medical chest X-ray images, thereby substantially improving the potential for accurate diagnosis, automatic detection and region-of-interest segmentation. We also propose a CNN-based model called ViewNet for predicting the view orientation of the X-ray image and generating a medical report using Xception net, thus facilitating a robust medical image management system for intelligent diagnosis applications. Experimental results are demonstrated using standard metrics like BRISQUE, PIQE and BLEU scores, indicating that the proposed models achieved excellent performance. Further, the proposed deep learning approaches enable diagnosis in a lesser time and their hybrid architecture shows significant potential for supporting many intelligent diagnosis applications.


Author(s):  
S. Anand

Medical image enhancement improves the quality and facilitates diagnosis. This chapter investigates three methods of medical image enhancement by exploiting useful edge information. Since edges have higher perceptual importance, the edge information based enhancement process is always of interest. But determination of edge information is not an easy job. The edge information is obtained from various approaches such as differential hyperbolic function, Haar filters and morphological functions. The effectively determined edge information is used for enhancement process. The retinal image enhancement method given in this chapter improves the visual quality of the vessels in the optic region. X-ray image enhancement method presented here is to increase the visibility of the bones. These algorithms are used to enhance the computer tomography, chest x-ray, retinal, and mammogram images. These images are obtained from standard datasets and experimented. The performance of these enhancement methods are quantitatively evaluated.


2015 ◽  
Vol 2 (1) ◽  
pp. 50-54
Author(s):  
P. A. Mason ◽  
E. L. Robinson ◽  
S. Gomez ◽  
J. V. Segura

We present new optical observations of V1408 Aql (= 4U 1957+115), the only low mass X-ray binary, black hole candidate known to be in a persistently soft state. We combine new broadband optical photometry with previously published data and derive a precise orbital ephemeris. The optical light curves display sinusoidal variations modulated on the orbital period as well as large night to night changes in mean intensity. The amplitude of the variations increases with mean intensity while maintaining sinusoidal shape. Considering the set of constraints placed by the X-ray and optical data we argue that V1408 Aql may harbor a very low mass black hole. Optical light curves of UW CrB display partial eclipses of the accretion disk by the donor star that vary both in depth and orbital phase. The new eclipses of UW CrB in conjunction with published eclipse timings are well fitted with a linear ephemeris. We derive an upper limit to the rate of change of the orbital period. By including the newly observed type I bursts with published bursts in our analysis, we find that optical bursts are not observed between orbital phases 0.93 and 0.07, i.e. they are not observable during partial eclipses of the disk.


2020 ◽  
Author(s):  
Reshma V K ◽  
Vinod Kumar R S

Abstract Securing the privacy of the medical information through the image steganography process has gained more research interest nowadays to protect the privacy of the patient. In the existing works, least significant bit (LSB) replacement strategy was most popularly used to hide the sensitive contents. Here, every pixel was replaced for achieving higher privacy, but it increased the complexity. This work introduces a novel pixel prediction scheme-based image steganography to overcome the complexity issues prevailing in the existing works. In the proposed pixel prediction scheme, the support vector neural network (SVNN) classifier is utilized for the construction of a prediction map, which identifies the suitable pixels for the embedding process. Then, in the embedding phase, wavelet coefficients are extracted from the medical image based on discrete wavelet transform (DWT) and embedding strength, and the secret message is embedded into the HL wavelet band. Finally, the secret message is extracted from the medical image on applying the DWT. The experimentation of the proposed pixel prediction scheme is done by utilizing the medical images from the BRATS database. The proposed pixel prediction scheme has achieved high performance with the values of 48.558 dB, 0.50009 and 0.9879 for the peak signal to noise ratio (PSNR), Structural Similarity Index (SSIM) and correlation factor, respectively.


Sign in / Sign up

Export Citation Format

Share Document