Power turbine speed control of the GE T700 engine using the zero steady-state self-tuning regulator

Author(s):  
C. Ozsoy ◽  
A. Duyar ◽  
R. Kazan ◽  
R. Kilic
2013 ◽  
Vol 274 ◽  
pp. 616-619
Author(s):  
Zhi Tao Wang ◽  
Yu Long Ying ◽  
Shu Ying Li ◽  
Tie Lei Li

In order to ensure the quality of marine gas turbine generation set, its speed must maintain constant. Due to rising or falling power demand, the real and reactive power balance is harmed and hence the turbine output speed gets deviated from nominal value. This necessitates the need for an intelligent fuzzy controller to generate and deliver power in an interconnected system as economically and reliably as possible while maintaining the power turbine speed within permissible limits. The design of complex parameter self-tuning fuzzy control system and efficient simulation were achieved. The models were simulated for different load conditions in order to demonstrate the effectiveness of the proposed controller. Simulation results emphasized the improved performance in comparison with fixed gain controllers. The proposed method overcomes the drawbacks of a conventional fixed gain controller and improvement was achieved in terms of settling time, oscillations and overshoot.


Author(s):  
Yong Wang ◽  
Changpeng Cai ◽  
Jie Song ◽  
Haibo Zhang

Abstract In order to overcome the problem of significant drop in operational efficiency remarkably while power turbine speed varies among a large range, an optimal speed control method of multiple turboshaft engines based on sequential shifting control (SSC) algorithm is proposed. Firstly, combined with multi-speed gearboxes, a sequential shifting control algorithm of multiple turboshaft engines is proposed and designed to accomplish continuously variable speed control. Then, selecting the minimum engine fuel flow as the optimization objective, an integrated optimization method of optimal speed based on multiple engines and multi-speed gearboxes is proposed to promote the operational economy. Finally, the simulation tests of the optimal speed control method of twin and triple turboshaft engines is conducted separately. The results demonstrate that the optimal speed control method of multiple turboshaft engines based on SSC algorithm can change the power turbine speeds by no more than 7% and main rotor speed by over 8% simultaneously. In addition, compared with the fixed-ratio transmission (FRT), engine fuel flows decrease by more than 2% under different cruise states. It proves that the optimal speed control method is beneficial to obtain more superior overall performances of the integrated helicopter/multi-engine system without considerable loss of compressor surge margin.


Author(s):  
Dipankar Dua ◽  
Brahmaji Vasantharao

Industrial and aeroderivative gas turbines when used in CHP and CCPP applications typically experience an increased exhaust back pressure due to pressure losses from the downstream balance-of-plant systems. This increased back pressure on the power turbine results not only in decreased thermodynamic performance but also changes power turbine secondary flow characteristics thus impacting lives of rotating and stationary components of the power turbine. This Paper discusses the Impact to Fatigue and Creep life of free power turbine disks subjected to high back pressure applications using Siemens Energy approach. Steady State and Transient stress fields have been calculated using finite element method. New Lifing Correlation [1] Criteria has been used to estimate Predicted Safe Cyclic Life (PSCL) of the disks. Walker Strain Initiation model [1] is utilized to predict cycles to crack initiation and a fracture mechanics based approach is used to estimate propagation life. Hyperbolic Tangent Model [2] has been used to estimate creep damage of the disks. Steady state and transient temperature fields in the disks are highly dependent on the secondary air flows and cavity dynamics thus directly impacting the Predicted Safe Cyclic Life and Overall Creep Damage. A System-level power turbine secondary flow analyses was carried out with and without high back pressure. In addition, numerical simulations were performed to understand the cavity flow dynamics. These results have been used to perform a sensitivity study on disk temperature distribution and understand the impact of various back pressure levels on turbine disk lives. The Steady Sate and Transient Thermal predictions were validated using full-scale engine test and have been found to correlate well with the test results. The Life Prediction Study shows that the impact on PSCL and Overall Creep damage for high back pressure applications meets the product design standards.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Tianqian Xia ◽  
Xianghua Huang

Abstract A method of variable speed control system for turboprop engine is presented in this paper. Firstly, the steady operation state of turboprop engine is analyzed, and the operating line is figured out in the steady state characteristic diagram, which is the design basis of Engine Thrust Management System (ETMS). Secondly, the reference model sliding mode multivariable control is used to design the control law to follow the speed instructions given by ETMS. Finally, the optimization of the minimum fuel consumption operating curve is realized, and the control system designed is applied to a numerical model of a turboprop engine. The simulation results show that compared with the constant speed control system, the variable speed control system can reduce the specific fuel consumption by 2.37 % on average and 3.1 % in steady state conditions. Furthermore, the method can enable the pilot to manipulate the turboprop aircraft by using only one throttle lever, which can greatly reduce the pilot operation burden.


Sign in / Sign up

Export Citation Format

Share Document