scholarly journals Exploiting parallelism to boost data-path rate in high-speed IP/MPLS networking

Author(s):  
Indra Widjaja ◽  
A.I. Elwalid
Keyword(s):  
2020 ◽  
Vol 8 (5) ◽  
pp. 4073-4079

For continuous monitoring of individual wellbeing, wearable devices are indispensable. The limitations of cost, utilization of power, delay and restricted device measurements are the basic issues which should be dealt cautiously while designing these battery powered devices. The wearables use high-end processors dedicated for complicated signal processing. Data path plays a key role in every digital signal processor. Adder is the most widely used component in wearable technology. This work proposes a novel architecture for PS0 pipelined adder. The proposed adder is implemented in 65nm TSMC CMOS and its performance has been compared with state-of-art adders. The SPICE level simulations are performed on HSPICE using 65nm TSMC CMOS @ 1.2 V. All the designs have been simulated with extracted wire and layout parasitics. The proposed adder ensures the lowest propagation delay which is 79.33% less when compared to RCA and has a power dissipation of 0.225 mw which is 25.4 % less as compared to CLA. Besides, the proposed adder offers a benefit of having lower transistor count which is 49.6% less as compared to RCA.


1974 ◽  
Vol 3 (34) ◽  
Author(s):  
Peter Kornerup ◽  
Bruce D. Shriver

A dynamically microprogrammable processor called MATHILDA is described. MATHILDA has been designed to be used as a tool in emulator and processor design research. It has a very general microinstruction sequencing scheme, sophisticated masking and shifting capability, high speed local storage, a 64-bit wide main data path, a horizontalty encoded microinstruction, and other facilities which make it reasonably well suited for this purpose. This paper presents an overview of the MATHILDA system.


Author(s):  
Uppugunduru Anil Kumar ◽  
G. Sahith ◽  
Sumit K Chatterjee ◽  
Syed Ershad Ahmed

Most image processing applications are naturally imprecise and can tolerate computational error up to a specific limit. In such applications, savings in power are achieved by pruning the data path units, such as an adder module. Truncation, however, may lead to errors in computing, and therefore, it is always a challenge between the amount of error that can be tolerated in an application and savings achieved in area, power and delay. This paper proposes a segmented approximate adder to reduce the computation complexity in error-resilient image processing applications. The sub-carry generator aids in achieving a faster design while carry speculation method employed improves the accuracy. Synthesis results indicate a reduced die-area up to 36.6%, improvement in delay up to 62.9%, and reduction in power consumption up to 34.1% compared to similar work published previously. Finally, the proposed adder is evaluated by using image smoothing and sharpening techniques. Simulations carried out on these applications prove that the proposed adder obtains better peak signal-to-noise ratio than those available in the literature.


Author(s):  
Wolfgang Mayerwieser ◽  
Karl C. Posch ◽  
Reinhard Posch ◽  
Volker Schindler
Keyword(s):  

Author(s):  
Ahmed Salah Hameed ◽  
Marwa Jawad Kathem

Adders are the heart of data path circuits for any processor in digital computer and signal processing systems. Growth in technology keeps supporting efficient design of binary adders for high speed applications. In this paper, a fast and area-efficient modified carry save adder (CSA) is presented. A multiplexer based design of full adder is proposed to implement the structure of the CSA. The proposed design of full adder is employed in designing all stages of traditional CSA. By modifying the design of full adder in CSA, the complexity and area of the design can be reduced, resulting in reduced delay time. The VHDL implementations of CSA adders including (the proposed version, traditional CSA, and modified CSAs presented in literature) are simulated using Quartus II synthesis software tool with the altera FPGA EP2C5T144C6 device (Cyclone II). Simulation results of 64-bit adder designs demonstrate the average improvement of 17.75%, 1.60%, and 8.81% respectively for the worst case time, thermal power dissipation and number of FPGA logic elements.


Sign in / Sign up

Export Citation Format

Share Document