Estimation of effective magnetic field in an iron bar by the ultrasonic resonance method

Author(s):  
H. Hatafuku ◽  
K. Watanabe ◽  
T. Yoshida
Author(s):  
J. Nitta

This chapter focuses on the electron spin degree of freedom in semiconductor spintronics. In particular, the electrostatic control of the spin degree of freedom is an advantageous technology over metal-based spintronics. Spin–orbit interaction (SOI), which gives rise to an effective magnetic field. The essence of SOI is that the moving electrons in an electric field feel an effective magnetic field even without any external magnetic field. Rashba spin–orbit interaction is important since the strength is controlled by the gate voltage on top of the semiconductor’s two-dimensional electron gas. By utilizing the effective magnetic field induced by the SOI, spin generation and manipulation are possible by electrostatic ways. The origin of spin-orbit interactions in semiconductors and the electrical generation and manipulation of spins by electrical means are discussed. Long spin coherence is achieved by special spin helix state where both strengths of Rashba and Dresselhaus SOI are equal.


1967 ◽  
Vol 45 (4) ◽  
pp. 1481-1495 ◽  
Author(s):  
Myer Bloom ◽  
Eric Enga ◽  
Hin Lew

A successful transverse Stern–Gerlach experiment has been performed, using a beam of neutral potassium atoms and an inhomogeneous time-dependent magnetic field of the form[Formula: see text]A classical analysis of the Stern–Gerlach experiment is given for a rotating inhomogeneous magnetic field. In general, when space quantization is achieved, the spins are quantized along the effective magnetic field in the reference frame rotating with angular velocity ω about the z axis. For ω = 0, the direction of quantization is the z axis (conventional Stern–Gerlach experiment), while at resonance (ω = −γH0) the direction of quantization is the x axis in the rotating reference frame (transverse Stern–Gerlach experiment). The experiment, which was performed at 7.2 Mc, is described in detail.


2007 ◽  
Vol 101 (11) ◽  
pp. 113919 ◽  
Author(s):  
S. V. Vasiliev ◽  
V. V. Kruglyak ◽  
M. L. Sokolovskii ◽  
A. N. Kuchko

2021 ◽  
Vol 104 (8) ◽  
Author(s):  
Luke R. St. Marie ◽  
Chieh-I Liu ◽  
I-Fan Hu ◽  
Heather M. Hill ◽  
Dipanjan Saha ◽  
...  

1996 ◽  
Vol 11 (11S) ◽  
pp. 1482-1487 ◽  
Author(s):  
J H Smet ◽  
R Fleischmann ◽  
D Weiss ◽  
R Ketzmerick ◽  
R H Blick ◽  
...  

Author(s):  
DONG-RYUN KIM ◽  
JAE-HOON KIM

Adhesive interface tests using ultrasonic waves are far superior to other nondestructive tests for detecting the disbond interface. However, a multilayered structure consisting of a steel case, rubber insulation, liner, and propellant poses many difficulties for analyzing ultrasonic waves because of the superposition of the reflected waves and the large differences in the acoustic impedances of the various materials. Therefore, ultrasonic tests for detecting the disbond interface of multilayered structures have been applied in very limited areas between the steel case and rubber insulation using an automatic system. The existing ultrasonic test cannot detect the disbond interface between the rubber and propellant of a multilayered structure because most of the ultrasonic waves are absorbed in the rubber material, which has low acoustic impedance. This problem could be overcome by amplifying the ultrasonic waves using the ultrasonic resonance method. The Lamb waves were used to evaluate the instability of the ultrasonic waves caused by the contact condition on the surface of the multilayered structure. In this paper, a new technique to detect the disbond interface between the liner and propellant using the property of ultrasonic resonance and Lamb waves is discussed in detail.


1986 ◽  
Vol 90 ◽  
pp. 365-368
Author(s):  
M.Yu. Skul'skij

AbstractStudy of dependence of chemical abundance on conditions of excitation within the limits which could exist in the atmosphere of bright component have led to conclusion that by no modification of physical parameters a “normal” abundance of chemical elements in the atmosphere can be obtained. The variable effective magnetic field with mean value (−1350±50) Gauss is discovered.


Sign in / Sign up

Export Citation Format

Share Document