Robust Autonomous Navigation of a Small-Scale Quadruped Robot in Real-World Environments

Author(s):  
Thomas Dudzik ◽  
Matthew Chignoli ◽  
Gerardo Bledt ◽  
Bryan Lim ◽  
Adam Miller ◽  
...  
Author(s):  
Tønnes F. Nygaard ◽  
Charles P. Martin ◽  
Jim Torresen ◽  
Kyrre Glette ◽  
David Howard
Keyword(s):  

2005 ◽  
Vol 14 (5) ◽  
pp. 580-596 ◽  
Author(s):  
Simon Lessels ◽  
Roy A. Ruddle

Two experiments investigated participants' ability to search for targets in a cluttered small-scale space. The first experiment was conducted in the real world with two field of view conditions (full vs. restricted), and participants found the task trivial to perform in both. The second experiment used the same search task but was conducted in a desktop virtual environment (VE), and investigated two movement interfaces and two visual scene conditions. Participants restricted to forward only movement performed the search task quicker and more efficiently (visiting fewer targets) than those who used an interface that allowed more flexible movement (forward, backward, left, right, and diagonal). Also, participants using a high fidelity visual scene performed the task significantly quicker and more efficiently than those who used a low fidelity scene. The performance differences among all the conditions decreased with practice, but the performance of the best VE group approached that of the real-world participants. These results indicate the importance of using high fidelity scenes in VEs, and suggest that the use of a simple control system is sufficient for maintaining one's spatial orientation during searching.


2021 ◽  
Author(s):  
Rodney H. Jones ◽  
Christiana Themistocleous

This accessible and entertaining textbook introduces students to both traditional and more contemporary approaches to sociolinguistics in a real-world context, addressing current social problems that students are likely to care about, such as racism, inequality, political conflict, belonging, and issues around gender and sexuality. Each chapter includes exercises, case studies and ideas for small-scale research projects, encouraging students to think critically about the different theories and approaches to language and society, and to interrogate their own beliefs about language and communication. The book gives students a grounding in the traditional concepts and techniques upon which sociolinguistics is built, while also introducing new developments from the last decade, such as translanguaging, multimodality, superdiversity, linguistic landscapes and language and digital media. Students will also have online access to more detailed examples, links to video and audio files, and more challenging exercises to strengthen their skills and confidence as sociolinguists.


2015 ◽  
Author(s):  
Χρήστος Παπαχρήστος

This Dissertation addresses the design and development of small-scale UnmannedAerial Vehicles of the TiltRotor class, alongside their autonomous navigation requirements,including the fully-onboard state estimation, high-efficiency flight control,and advanced environment perception.Starting with an educated Computer Assisted Design-based methodology, a mechanicallyrobust, customizable, and repeatable vehicle build is achieved, relyingon high-quality Commercially Available Off-The Shelf equipment –sensors, actuators,structural components–, optionally aided by Rapid Prototyping technology.A high-fidelity modeling process is conducted, incorporating the rigid-body dynamics,aerodynamics, and the actuation subsystem dynamics, exploiting fistprincipleapproaches, Frequency Domain System Identification, as well as computationaltools. Considering the most significant phenomena captured in thisprocess, a more simplified PieceWise Affine system model representation is developedfor control purposes –which however incorporates complexities such as flight(state) envelope-associated aerodynamics, the differentiated effects of the directthrust-vectoring (rotor-tilting) and the underactuated (body-pitching) actuationauthorities, as well as their interferences through rigid-body coupling–.Despite the switching system dynamics, and –as thoroughly elaborated– theirreliance on constrained manipulated variables, to maintain a meaningful controlorientedrepresentation, the real-time optimal flight control of the TiltRotor vehicleis achieved relying on a Receding Horizon methodology, and more specifically anexplicit Model Predictive Control framework. This synthesis guarantees globalstability of the switching dynamics, observance of state and control input constraints,response optimality, as well as efficient execution on low computationa power modules due to its explicit representation. Accompanied by a proper Lowand-Mid-LevelControl synthesis, this scheme provides exceptional flight handlingqualities to the aerial vehicle, particularly in the areas of aggressive maneuveringand high-accuracy trajectory tracking.Moreover, the utility of TiltRotor vehicles in the field of aerial robotic forcefulphysical interaction is researched. Exploiting the previously noted properties ofthe PieceWise Affine systems Model Predictive Control strategy, the guaranteedstabilityFree-Flight to Physical-Interaction switching of the system is achieved,effectively bringing the aerial vehicle into safe, controlled physical contact withthe surface of structures in the environment.More importantly, employing rotor-tilting actuation –collectively and differentially–significant forces and moments can be applied onto the environment, while via thestandard underactuated authority the vehicle maintains a stable hovering-attitudepose, where the system’s disturbance rejection properties are maximized. Overall,the complete control framework enables coming into physical contact with environmentstructures, and manipulating the enacted forces and moments. Exploitingsuch capabilities the TiltRotor is used to achieve the execution of physicallydemandingwork-tasks (surface-grinding) and the manipulation of realisticallysizedobjects (of twice its own mass) via pushing.Additionally, the fully-onboard state estimation problem is tackled by implementingdata fusion of measurements derived from inertial sensors and customdevelopedcomputer vision algorithms which employ Homography and OpticalFlow calculation. With a proper sensorial setup, high-rate and robust ego-motionestimation is achieved, enabling the controlled aggressive maneuverability withoutreliance on external equipment, such as motion capture systems or GlobalPositioning System coverage.Finally, a hardware/software framework is developed which adds advanced autonomousperception and navigation capabilities to small-scale unmanned vehicles,employing stereo vision and integrating state-of-the art solutions for incrementalenvironment building, dense reconstruction and mapping, and point-to-pointcollision-free navigation. Within this framework, algorithms which enable the detection,segmentation, (re-)localization, and mobile tracking –and avoidance– of adynamic subject within the aerial vehicle’s operating space are developed, substantiallyincreasing the operational potential of autonomous aircraft within dynamicenvironments and/or dynamically evolving missions.


Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2868
Author(s):  
Wenxuan Zhao ◽  
Yaqin Zhao ◽  
Liqi Feng ◽  
Jiaxi Tang

The purpose of image dehazing is the reduction of the image degradation caused by suspended particles for supporting high-level visual tasks. Besides the atmospheric scattering model, convolutional neural network (CNN) has been used for image dehazing. However, the existing image dehazing algorithms are limited in face of unevenly distributed haze and dense haze in real-world scenes. In this paper, we propose a novel end-to-end convolutional neural network called attention enhanced serial Unet++ dehazing network (AESUnet) for single image dehazing. We attempt to build a serial Unet++ structure that adopts a serial strategy of two pruned Unet++ blocks based on residual connection. Compared with the simple Encoder–Decoder structure, the serial Unet++ module can better use the features extracted by encoders and promote contextual information fusion in different resolutions. In addition, we take some improvement measures to the Unet++ module, such as pruning, introducing the convolutional module with ResNet structure, and a residual learning strategy. Thus, the serial Unet++ module can generate more realistic images with less color distortion. Furthermore, following the serial Unet++ blocks, an attention mechanism is introduced to pay different attention to haze regions with different concentrations by learning weights in the spatial domain and channel domain. Experiments are conducted on two representative datasets: the large-scale synthetic dataset RESIDE and the small-scale real-world datasets I-HAZY and O-HAZY. The experimental results show that the proposed dehazing network is not only comparable to state-of-the-art methods for the RESIDE synthetic datasets, but also surpasses them by a very large margin for the I-HAZY and O-HAZY real-world dataset.


Author(s):  
Aatish Chandak ◽  
Arjun Aravind ◽  
Nithin Kamath

The methods for autonomous navigation of a robot in a real world environment is an area of interest for current researchers. Although there have been a variety of models developed, there are problems with regards to the integration of sensors for navigation in an outdoor environment like moving obstacles, sensor and component accuracy. This paper details an attempt to develop an autonomous robot prototype using only ultrasonic sensors for sensing the environment and GPS/ GSM and a digital compass for position and localization. An algorithm for the navigation based on reactive behaviour is presented. Once the robot has navigated to its final location based on remote access by the owner, it surveys the geographical region and uploads the real time images to the owner using an API that is developed for the Raspberry PI’s kernel.


2021 ◽  
Author(s):  
Stephen Romaniello ◽  
Shanee Stopnitzky ◽  
Tom Green ◽  
Francesc Montserrat ◽  
Eric Matzner ◽  
...  

<p>Slow progress towards achieving global greenhouse gas emissions targets significantly increases the likelihood that future climate efforts may require not only emissions cuts but also direct climate mitigation via negative emissions technologies (IPCC AR5). Currently, such technologies exist at only a nascent stage of development, with significant uncertainties regarding their feasibility, cost, and potential unintended consequences and/or co-benefits.</p><p>Coastal enhanced weathering of olivine (CEWO) has been suggested as one potential pathway for achieving net negative CO<sub>2</sub> emissions at scale. CEWO involves the mining of olivine-rich ultramafic rocks (such as dunite) for incorporation during beach augmentation and restoration work. While grinding this rock into increasingly fine particle sizes is essential for increasing its surface area and reactivity, this step is also costly and energetically expensive. CEWO attempts to minimize this cost and energy penalty by relying on wave and tidal action to provide ongoing physical weathering of olivine grains once distributed on beaches. Laboratory experiments and carbon emissions assessments of CEWO suggest that these approaches may be technically feasible and carbon negative, but significant uncertainties remain regarding the real-world kinetics of coastal olivine dissolution. Furthermore, concerns about the fate and ecological impact of nickel (Ni) and chromium (Cr)—potentially toxic trace metals found in olivine—require careful evaluation.</p><p>In 2019, Project Vesta was established as a nonprofit, philanthropically funded effort to evaluate the technical feasibility and ecological impacts of CEWO through a dedicated research program ultimately culminating in small-scale, real-world field trials of CEWO. This presentation will provide an overview and discussion of our overall research strategy, share insights from interim modeling and mesocosm experiments designed to ensure the practicality and safety of future field experiments, and explain our approach for ensuring transparent, responsible, and ethical research oversight and governance.</p>


Algorithms ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 316
Author(s):  
Steven Bouma ◽  
Christophe Hurter ◽  
Alexandru Telea

Creating simplified visualizations of large 3D trail sets with limited occlusion and preservation of the main structures in the data is challenging. We address this challenge for the specific context of 3D fiber trails created by DTI tractography. For this, we propose to jointly simplify trails in both the geometric space (by extending and adapting an existing bundling method to handle 3D trails) and in the image space (by proposing several shading and rendering techniques). Our method can handle 3D datasets of hundreds of thousands of trails at interactive rate, has parameters for the most of which good preset values are given, and produces visualizations that have been found, in a small-scale user study involving five medical professionals, to be better in occlusion reduction, conveying the connectivity structure of the brain, and overall clarity than existing methods for the same data. We demonstrate our technique with several real-world public DTI datasets.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 958 ◽  
Author(s):  
Matteo Postacchini ◽  
Giovanna Darvini ◽  
Fiorenza Finizio ◽  
Leonardo Pelagalli ◽  
Luciano Soldini ◽  
...  

Pump-As-Turbine (PAT) technology is a smart solution to produce energy in a sustainable way at small scale, e.g., through its exploitation in classical Water Distribution Networks (WDNs). PAT application may actually represent a suitable solution to obtain both pressure regulation and electrical energy production. This technology enables one to significantly reduce both design and maintenance costs if compared to traditional turbine applications. In this work, the potential hydropower generation was evaluated through laboratory tests focused on the characterization of a pump working in reverse mode, i.e., as a PAT. Both hydrodynamic (pressure and discharge) and mechanical (rotational speed and torque) conditions were varied during the tests, with the aim to identify the most efficient PAT configurations and provide useful hints for possible real-world applications. The experimental findings confirm the good performances of the PAT system, especially when rotational speed and water demand are, respectively, larger than 850 rpm and 8 L/s, thus leading to efficiencies greater than 50%. Such findings were applied to a small municipality, where daily distribution of pressure and discharge were recorded upstream of the local WDN, where a Pressure Reducing Valve (PRV) is installed. Under the hypothesis of PRV replacement with the tested PAT, three different scenarios were studied, based on the mean recorded water demand and each characterized by specific values of PAT rotational speed. The best performances were observed for the largest tested speeds (1050 and 1250 rpm), which lead to pressure drops smaller than those actually due to the PRV, thus guaranteeing the minimum pressure for users, but also to mechanical powers smaller than 100 W. When a larger mean water demand is assumed, much better performances are reached, especially for large speeds (1250 rpm) that lead to mechanical powers larger than 1 kW combined to head drops a bit larger than those observed using the PRV. A suitable design is thus fundamental for the real-world PAT application.


Sign in / Sign up

Export Citation Format

Share Document