Progress towards small-scale field trials of coastal enhanced weathering of olivine

Author(s):  
Stephen Romaniello ◽  
Shanee Stopnitzky ◽  
Tom Green ◽  
Francesc Montserrat ◽  
Eric Matzner ◽  
...  

<p>Slow progress towards achieving global greenhouse gas emissions targets significantly increases the likelihood that future climate efforts may require not only emissions cuts but also direct climate mitigation via negative emissions technologies (IPCC AR5). Currently, such technologies exist at only a nascent stage of development, with significant uncertainties regarding their feasibility, cost, and potential unintended consequences and/or co-benefits.</p><p>Coastal enhanced weathering of olivine (CEWO) has been suggested as one potential pathway for achieving net negative CO<sub>2</sub> emissions at scale. CEWO involves the mining of olivine-rich ultramafic rocks (such as dunite) for incorporation during beach augmentation and restoration work. While grinding this rock into increasingly fine particle sizes is essential for increasing its surface area and reactivity, this step is also costly and energetically expensive. CEWO attempts to minimize this cost and energy penalty by relying on wave and tidal action to provide ongoing physical weathering of olivine grains once distributed on beaches. Laboratory experiments and carbon emissions assessments of CEWO suggest that these approaches may be technically feasible and carbon negative, but significant uncertainties remain regarding the real-world kinetics of coastal olivine dissolution. Furthermore, concerns about the fate and ecological impact of nickel (Ni) and chromium (Cr)—potentially toxic trace metals found in olivine—require careful evaluation.</p><p>In 2019, Project Vesta was established as a nonprofit, philanthropically funded effort to evaluate the technical feasibility and ecological impacts of CEWO through a dedicated research program ultimately culminating in small-scale, real-world field trials of CEWO. This presentation will provide an overview and discussion of our overall research strategy, share insights from interim modeling and mesocosm experiments designed to ensure the practicality and safety of future field experiments, and explain our approach for ensuring transparent, responsible, and ethical research oversight and governance.</p>

1999 ◽  
Vol 71 (1) ◽  
pp. 153-160 ◽  
Author(s):  
Timothy J. Reilly

Introduction: The use of chemical and biological agents (e.g. dispersants and bioremediation agents, respectively), as well as certain physical oil removal techniques (e.g. high-pressure, hot-water applications to oiled shorelines) during oil spill response operations requires consideration both of the gross effectiveness of such oil removal/displacement techniques and of the ecological impact of the response technique. Accordingly, the intent of response technology optimization requires the identification of suitable response agents, their application strategies, determination of mass oil removal effectiveness, and efficient coordination of alternative response strategies with conventional measures, all compared with traditional mechanical collection methods and evaluation or relative response ecological impacts. These issues often need to be examined in an experimental setting in order to acquire information required to make more effective decisions during oil spill response and cleanup operations. Controlled field studies that are designed to identify optimal response and clean-up strategies, while valuable for realism, are expensive and often difficult to implement because of regulatory barriers (Reilly et al., 1994)). Conversely, results from small scale laboratory testing do not incorporate sufficient environmental realism (variables and scale) to permit confident predictions about real-world situations. However, bounded and partly enclosed outdoor experimental units, or 'mesocosms', can closely simulate natural aquatic environments (Odum, 1984). Such test systems provide a simulation of real-world exposure without the costs of a controlled-release field study. Mesocosms can serve to bridge the gap between large-scale field experiments, with their inherent control difficulties, laboratory experiments which can be statistically replicated but suffer from a lack of environmental realism (Rodgers et al., 1996).Mesocosms have strengths and weaknesses depending upon system design. Therefore, the type of ecological research to be conducted will dictate the choice of mesocosm design. The following discussion presents design requirements and scientific considerations for mesocosm simulations of marine environments impacted by oil spills. Two existing mesocosm systems for marine oil spill ecological research in both pelagic and nearshore environments are reviewed in some detail - the Marine Ecosystem Research Laboratory (MERL) in Narragansett, Rhode Island, and the Coastal Oil-Spill Simulation System (COSS), in Corpus Christi, Texas.


1937 ◽  
Vol 15 (1) ◽  
pp. 9-20 ◽  
Author(s):  
Richard H. Hurst ◽  
Mary T. Franklin

This communication is concerned with the field trials of substances which in previous small-scale experiments had shown promise of controlling “potatò-sickness” when they were mixed with infected soil.


2020 ◽  
Vol 637 ◽  
pp. 195-208 ◽  
Author(s):  
EM DeRoy ◽  
R Scott ◽  
NE Hussey ◽  
HJ MacIsaac

The ecological impacts of invasive species are highly variable and mediated by many factors, including both habitat and population abundance. Lionfish Pterois volitans are an invasive marine species which have high reported detrimental effects on prey populations, but whose effects relative to native predators are currently unknown for the recently colonized eastern Gulf of Mexico. We used functional response (FR) methodology to assess the ecological impact of lionfish relative to 2 functionally similar native species (red grouper Epinephelus morio and graysby grouper Cephalopholis cruentata) foraging in a heterogeneous environment. We then combined the per capita impact of each species with their field abundance to obtain a Relative Impact Potential (RIP). RIP assesses the broader ecological impact of invasive relative to native predators, the magnitude of which predicts community-level negative effects of invasive species. Lionfish FR and overall consumption rate was intermediate to that of red grouper (higher) and graysby grouper (lower). However, lionfish had the highest capture efficiency of all species, which was invariant of habitat. Much higher field abundance of lionfish resulted in high RIPs relative to both grouper species, demonstrating that the ecological impact of lionfish in this region will be driven mainly by high abundance and high predator efficiency rather than per capita effect. Our comparative study is the first empirical assessment of lionfish per capita impact and RIP in this region and is one of few such studies to quantify the FR of a marine predator.


Author(s):  
Akil Ibrahim Al-Zuhari

The article defines the features of the process of forming the research tradition of studying the institute of parliamentarism as a mechanism for the formation of democracy. It is established that parliamentarism acts as one of the varieties of the regime of functioning of the state, to which the independence of the representative body from the people is inherent, its actual primacy in the state mechanism, the division of functions between the legislative and executive branches of government, the responsibility and accountability of the government to the parliament. It is justified that, in addition to the regime that fully meets the stated requirements of classical parliamentarism, there are regimes that can be characterized as limited parliamentary regimes. The conclusions point out that parliamentarism does not necessarily lead to a democracy regime. At the first stage of development of statehood, it functions for a long time in the absence of many attributes of democracy, but at the present stage, without parliamentarism, democracy will be substantially limited. Modern researchers of parliamentarism recognize that this institution is undergoing changes with the development of the processes of democracy and democratization. This is what produces different approaches to its definition. However, most scientists under classical parliamentarianism understand such a system, which is based on the balance of power. This approach seeks to justify limiting the rights of parliament and strengthening executive power. Keywords: Parliamentarism, research strategy, theory of parliamentarism, types of parliamentarism


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Christiane Zarfl ◽  
Jürgen Berlekamp ◽  
Fengzhi He ◽  
Sonja C. Jähnig ◽  
William Darwall ◽  
...  

AbstractDam construction comes with severe social, economic and ecological impacts. From an ecological point of view, habitat types are altered and biodiversity is lost. Thus, to identify areas that deserve major attention for conservation, existing and planned locations for (hydropower) dams were overlapped, at global extent, with the contemporary distribution of freshwater megafauna species with consideration of their respective threat status. Hydropower development will disproportionately impact areas of high freshwater megafauna richness in South America, South and East Asia, and the Balkan region. Sub-catchments with a high share of threatened species are considered to be most vulnerable; these are located in Central America, Southeast Asia and in the regions of the Black and Caspian Sea. Based on this approach, planned dam locations are classified according to their potential impact on freshwater megafauna species at different spatial scales, attention to potential conflicts between climate mitigation and biodiversity conservation are highlighted, and priorities for freshwater management are recommended.


Minerals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 9
Author(s):  
Tomas Undabeytia ◽  
Uri Shuali ◽  
Shlomo Nir ◽  
Baruch Rubin

This review deals with modification of montmorillonite and other clay-minerals and clays by interacting them with organic cations, for producing slow release formulations of herbicides, and efficient removal of pollutants from water by filtration. Elaboration is on incorporating initially the organic cations in micelles and liposomes, then producing complexes denoted micelle- or liposome-clay nano-particles. The material characteristics (XRD, Freeze-fracture electron microscopy, adsorption) of the micelle– or liposome–clay complexes are different from those of a complex of the same composition (organo-clay), which is formed by interaction of monomers of the surfactant with the clay-mineral, or clay. The resulting complexes have a large surface area per weight; they include large hydrophobic parts and (in many cases) have excess of a positive charge. The organo-clays formed by preadsorbing organic cations with long alkyl chains were also addressed for adsorption and slow release of herbicides. Another examined approach includes “adsorptive” clays modified by small quaternary cations, in which the adsorbed organic cation may open the clay layers, and consequently yield a high exposure of the siloxane surface for adsorption of organic compounds. Small scale and field experiments demonstrated that slow release formulations of herbicides prepared by the new complexes enabled reduced contamination of ground water due to leaching, and exhibited enhanced herbicidal activity. Pollutants removed efficiently from water by the new complexes include (i) hydrophobic and anionic organic molecules, such as herbicides, dissolved organic matter; pharmaceuticals, such as antibiotics and non-steroidal drugs; (ii) inorganic anions, e.g., perchlorate and (iii) microorganisms, such as bacteria, including cyanobacteria (and their toxins). Model calculations of adsorption and kinetics of filtration, and estimation of capacities accompany the survey of results and their discussion.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 789
Author(s):  
Klára Kosová ◽  
Miroslav Klíma ◽  
Ilja Tom Prášil ◽  
Pavel Vítámvás

Low temperatures in the autumn induce enhanced expression/relative accumulation of several cold-inducible transcripts/proteins with protective functions from Late-embryogenesis-abundant (LEA) superfamily including dehydrins. Several studies dealing with plants grown under controlled conditions revealed a correlation (significant quantitative relationship) between dehydrin transcript/protein relative accumulation and plant frost tolerance. However, to apply these results in breeding, field experiments are necessary. The aim of the review is to provide a summary of the studies dealing with the relationships between plant acquired frost tolerance and COR/LEA transcripts/proteins relative accumulation in cereals grown in controlled and field conditions. The impacts of cold acclimation and vernalisation processes on the ability of winter-type Triticeae to accumulate COR/LEA proteins are discussed. The factors determining dehydrin relative accumulation under controlled cold acclimation treatments versus field trials during winter seasons are discussed. In conclusion, it can be stated that dehydrins could be used as suitable indicators of winter survival in field-grown winter cereals but only in plant prior to the fulfilment of vernalisation requirement.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1269
Author(s):  
David K. Mfuti ◽  
Amanuel Tamiru ◽  
William D. J. Kirk ◽  
Adeyemi O. Akinyemi ◽  
Heather Campbell ◽  
...  

The potential of semiochemicals to lure insect pests to a trap where they can be killed with biopesticides has been demonstrated as an eco-friendly pest management alternative. In this study, we tested two recently characterized male-produced aggregation pheromones of the bean flower thrips Megalurothrips sjostedti (Trybom), namely (R)-lavandulyl 3-methylbutanoate (major) and (R)-lavandulol (minor), for their field efficacy. Moreover, compatibility of these pheromones and two other thrips attractants, Lurem-TR and neryl (S)-2-methylbutanoate, with the entomopathogenic fungus (EPF) Metarhizium anisopliae ICIPE 69 has been determined. Our study revealed that the M. sjostedti aggregation pheromones have dose-dependent antifungal effects on the EPF viability, but showed no fungistatic effect at a field-realistic dose for attraction of thrips. (R)-lavandulyl 3-methylbutanoate had similar antifungal effects as neryl (S)-2-methylbutanoate 8 days after exposure; whereas, Lurem-TR had a stronger antifungal effect than other thrips attractants. In the semi-field experiments, all autoinoculation devices maintained at least 86% viability of M. anisopliae conidia after 12 days of exposure. Field trials demonstrated for the first time that (R)-lavandulyl 3-methylbutanoate increases trap catches. Our findings pave a way for designing a lure-and-kill thrips management strategy to control bean flower thrips using autoinoculation devices or spot spray application.


Plant Disease ◽  
2019 ◽  
Vol 103 (8) ◽  
pp. 1991-1997 ◽  
Author(s):  
Xiaoxue Ji ◽  
Jingjing Li ◽  
Zhen Meng ◽  
Shouan Zhang ◽  
Bei Dong ◽  
...  

Gray mold caused by Botrytis cinerea can be a severe disease of tomato infecting leaves and fruits of tomato plants. Chemical control is currently the most effective and reliable method; however, application of fungicides has many drawbacks. The combination of biological control agents with newly developed fungicides may be a practicable method to control B. cinerea. Fluopimomide is a newly developed fungicide with a novel mode of action. Bacillus methylotrophicus TA-1, isolated from rhizosphere soil of tomato, is a bacterial strain with a broad spectrum of antimicrobial activities. Little information is currently available about the effect of fluopimomide and its integrated effect on B. cinerea. Therefore, laboratory, pot, and field experiments were carried out to determine the effects of fluopimomide alone and in combination with B. methylotrophicus TA-1 against gray mold on tomato. The in vitro growth of B. methylotrophicus TA-1 was unaffected by 100 mg liter−1 fluopimomide. Inhibition of B. cinerea mycelial growth was significantly increased under combined treatment of fluopimomide and B. methylotrophicus TA-1. In greenhouse experiments, efficacy against gray mold was significantly greater by an integration of fluopimomide and B. methylotrophicus TA-1 than by either alone; control efficacy of fluopimomide at 50 and 100 g ha−1 in combination with B. methylotrophicus TA-1 at 108 colony-forming units (cfu) ml−1 reached 70.16 and 69.32%, respectively, compared with the untreated control. In both field trials during 2017 and 2018, control efficacy was significantly higher for the combination of fluopimomide at 50 and 100 g ha−1 in combination with B. methylotrophicus TA-1 than for either treatment alone. The results from this study indicated that integration of the new fungicide fluopimomide with the biocontrol agent B. methylotrophicus TA-1 synergistically increased control efficacy of the fungicide against gray mold of tomato.


Sign in / Sign up

Export Citation Format

Share Document