Comparing the performance of bipolar and unipolar switching frequency to drive DC-AC Inverter

Author(s):  
Ali Algaddafi ◽  
Khalifa Elnaddab ◽  
Abdullah Al Ma'mari ◽  
Abdelrahim Nasser Esgiar
Keyword(s):  
2020 ◽  
pp. 99-107
Author(s):  
Erdal Sehirli

This paper presents the comparison of LED driver topologies that include SEPIC, CUK and FLYBACK DC-DC converters. Both topologies are designed for 8W power and operated in discontinuous conduction mode (DCM) with 88 kHz switching frequency. Furthermore, inductors of SEPIC and CUK converters are wounded as coupled. Applications are realized by using SG3524 integrated circuit for open loop and PIC16F877 microcontroller for closed loop. Besides, ACS712 current sensor used to limit maximum LED current for closed loop applications. Finally, SEPIC, CUK and FLYBACK DC-DC LED drivers are compared with respect to LED current, LED voltage, input voltage and current. Also, advantages and disadvantages of all topologies are concluded.


2015 ◽  
Vol 9 (1) ◽  
pp. 553-559
Author(s):  
HU Xin-xin ◽  
Chen Chun-lan

In order to optimize the electric energy quality of HVDC access point, a modular multilevel selective harmonic elimination pulse-width modulation (MSHE-PWM) method is proposed. On the basis of keeping the minimum action frequency of the power device, MSHE-PWM method can meet the requirement for accurately eliminating low-order harmonics in the output PWM waveform. Firstly, establish the basic mathematical model of MMC topology and point out the voltage balance control principle of single modules; then, analyze offline gaining principle and realization way of MSHEPWM switching angle; finally, verify MSHE-PWM control performance on the basis of MMC reactive power compensation experimental prototype. The experimental result shows that the proposed MSHE-PWM method can meet such performance indexes as low switching frequency and no lower-order harmonics, and has verified the feasibility and effectiveness thereof for optimizing the electric energy quality of HVDC access point.


2019 ◽  
Vol 11 (9) ◽  
pp. 2604 ◽  
Author(s):  
Arzhang Yousefi-Talouki ◽  
Shaghayegh Zalzar ◽  
Edris Pouresmaeil

In this paper, a direct power control (DPC) technique is proposed for matrix converter-fed grid-connected doubly fed induction generators (DFIGs). In contrast to what has been investigated in the past for direct torque control (DTC) or DPC of matrix converter-fed DFIGs, the active and reactive powers are regulated in a fixed switching frequency using indirect space vector modulation (ISVM) technique. Hence, designing input filters for matrix converters (MCs) becomes convenient. In addition, the reactive component of input side of MC is controlled which leads to reduction of distortion in grid current waveform. Also, an extensive discussion is addressed for nonlinear voltage errors of MC that may cause inaccurate power control. Simulation results done in MATLAB/Simulink show the effectiveness of the proposed method.


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 355
Author(s):  
Yeu-Torng Yau ◽  
Chao-Wei Wang ◽  
Kuo-Ing Hwu

In this paper, two light-load efficiency improvement methods are presented and applied to the ultrahigh step-down converter. The two methods are both based on skip mode control. Skip Mode 1 only needs one half-bridge driver integrated circuit (IC) to drive three switches, so it has the advantages of easy signal control and lower cost, whereas Skip Mode 2 requires one half-bridge driver integrated circuit IC, one common ground driver IC, and three independent timing pulse-width-modulated (PWM) signals to control three switches, so the cost is higher and the control signals are more complicated, but Skip Mode 2 can obtain slightly higher light-load efficiency than Skip Mode 1. Although the switching frequency used in these methods are reduced, the transferred energy is unchanged, but the output voltage ripple is influenced to some extent.


Author(s):  
Riccardo Mandrioli ◽  
Aleksandr Viatkin ◽  
Manel Hammami ◽  
Mattia Ricco ◽  
Gabriele Grandi

Sign in / Sign up

Export Citation Format

Share Document