Smart Contracts for supply chain applicable to Smart Cities daily operations

Author(s):  
Jesus Maximo Montes ◽  
Cecilia E. Ramirez ◽  
Manuel Coronado Gutierrez ◽  
Victor M. Larios
Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5307
Author(s):  
Ricardo Borges dos Santos ◽  
Nunzio Marco Torrisi ◽  
Rodrigo Palucci Pantoni

Every consumer’s buying decision at the supermarket influences food brands to make first party claims of sustainability and socially responsible farming methods on their agro-product labels. Fine wines are often subject to counterfeit along the supply chain to the consumer. This paper presents a method for efficient unrestricted publicity to third party certification (TPC) of plant agricultural products, starting at harvest, using smart contracts and blockchain tokens. The method is capable of providing economic incentives to the actors along the supply chain. A proof-of-concept using a modified Ethereum IGR token set of smart contracts using the ERC-1155 standard NFTs was deployed on the Rinkeby test net and evaluated. The main findings include (a) allowing immediate access to TPC by the public for any desired authority by using token smart contracts. (b) Food safety can be enhanced through TPC visible to consumers through mobile application and blockchain technology, thus reducing counterfeiting and green washing. (c) The framework is structured and maintained because participants obtain economical incentives thus leveraging it´s practical usage. In summary, this implementation of TPC broadcasting through tokens can improve transparency and sustainable conscientious consumer behaviour, thus enabling a more trustworthy supply chain transparency.


Smart Cities ◽  
2020 ◽  
Vol 3 (3) ◽  
pp. 585-603 ◽  
Author(s):  
Max Leyerer ◽  
Marc-Oliver Sonneberg ◽  
Maximilian Heumann ◽  
Michael H. Breitner

Urbanization, the corresponding road traffic, and increasing e-grocery markets require efficient and at the same time eco-friendly transport solutions. In contrast to traditional food procurement at local grocery stores, e-grocery, i.e., online ordered goods, are transported directly to end customers. We develop and discuss an optimization approach to assist the planning of e-grocery deliveries in smart cities introducing a new last mile concept for the urban food supply chain. To supply city dwellers with their ordered products, a network of refrigerated grocery lockers is optimized to temporarily store the corresponding goods within urban areas. Customers either collect their orders by themselves or the products are delivered with electric cargo bicycles (ECBs). We propose a multi-echelon optimization model that minimizes the overall costs while consecutively determining optimal grocery locker locations, van routes from a depot to opened lockers, and ECB routes from lockers to customers. With our approach, we present an advanced concept for grocery deliveries in urban areas to shorten last mile distances, enhancing sustainable transportation by avoiding road traffic and emissions. Therefore, the concept is described as a smart transport system.


2019 ◽  
Vol 8 (4) ◽  
pp. 5795-5802

Blockchain Technology is one of the most popular technologies of present days. This technology has the capability to eliminate the requirement of third party to validate the transactions over the Peer-to-Peer network. Due to various features of Blockchain like smart contract, consensus mechanism, network transactions are completed securely, efficiently and timely. This technology is very useful in many areas including medical, IoT, e-Governance services, smart cities, taxation, supply chain, banking etc. In this paper, we discuss the Blockchain Technology in detail, its data structure, open source platform like Ethereum and Hyperledger, technical aspects of this technology, possible applications of this technology, challenges and limitations in adaptation of this technology.


2020 ◽  
Author(s):  
Ilhaam Omar ◽  
Mazin Debe ◽  
Raja Jayaraman ◽  
Khaled Salah ◽  
Mohammed Omar ◽  
...  

<div>The COVID-19 pandemic has severely impacted many industries, in particular the healthcare sector exposing systemic vulnerabilities in emergency preparedness, risk mitigation, and supply chain management. A major challenge during the pandemic was related to the increased demand of Personal Protective Equipment (PPE) resulting in critical shortages for healthcare and frontline workers. The lack of information visibility combined with the inability to precisely track product movement within the supply chain requires an robust traceability solution. Blockchain technology is a distributed ledger that ensures a transparent,</div><div>safe, and secure exchange of data among supply chain stakeholders. The advantages of adopting blockchain technology to manage and track PPE products in the supply chain include decentralized control, security, traceability,</div><div>and auditable time-stamped transactions. In this paper, we present a blockchain-based approach using smart contracts to transform PPE supply chain operations. We propose a generic framework using Ethereum smart contracts and</div><div>decentralized storage systems to automate the processes and information exchange and present detailed algorithms that capture the interactions among supply chain stakeholders. The smart contract code was developed and tested in Remix environment, and the code is made publicly available on Github. We present detailed cost and security analysis incurred by the stakeholders in the supply chain. Adopting a blockchain-based solution for PPE supply chains is economically viable and provides a streamlined, secure, trusted, and transparent mode of communication among various stakeholders.</div>


2015 ◽  
Vol 20 (3) ◽  
pp. 237-248 ◽  
Author(s):  
Elcio M. Tachizawa ◽  
María J. Alvarez-Gil ◽  
María J. Montes-Sancho

Purpose – The purpose of this paper is to analyze the impact of smart city initiatives and big data on supply chain management (SCM). More specifically, the connections between smart cities, big data and supply network characteristics (supply network structure and governance mechanisms) are investigated. Design/methodology/approach – An integrative framework is proposed, grounded on a literature review on smart cities, big data and supply networks. Then, the relationships between these constructs are analyzed, using the proposed integrative framework. Findings – Smart cities have different implications to network structure (complexity, density and centralization) and governance mechanisms (formal vs informal). Moreover, this work highlights and discusses the future research directions relating to smart cities and SCM. Research limitations/implications – The relationships between smart cities, big data and supply networks cannot be described simply by using a linear, cause-and-effect framework. Accordingly, an integrative framework that can be used in future empirical studies to analyze smart cities and big data implications on SCM has been proposed. Practical implications – Smart cities and big data alone have limited capacity of improving SCM processes, but combined they can support improvement initiatives. Nevertheless, smart cities and big data can also suppose some novel obstacles to effective SCM. Originality/value – Several studies have analyzed information technology innovation adoption in supply chains, but, to the best of our knowledge, no study has focused on smart cities.


2020 ◽  
Vol 8 (5) ◽  
pp. 366
Author(s):  
Srdjan Vujičić ◽  
Nermin Hasanspahić ◽  
Maro Car ◽  
Leo Čampara

In recent years, many industries have adopted technology and digital systems to automate, expedite and secure specific processes. Stakeholders in maritime transport continue to exchange physical documents in order to conduct business. The monitoring of supply chain goods, communication among employees, environmental sustainability and longevity control, along with time framing, all create challenges to many industries. Everyday onboard work, such as cargo operations, navigation and various types of inspections in shipping, still requires paper documents and logs that need to be signed (and stamped). The conversion of traditional paper contracts into smart contracts, which can be digitalized and read through automation, provides a new wave of collaboration between eco systems across the shipping industry. Various data collected and stored on board ships could be used for scientific purposes. Distributed ledger technology (DLT) could be used to collect all those data and improve shipping operations by process expediting. It could eliminate the need to fill in various documents and logs and make operations safer and more environmentally friendly. Information about various important procedures onboard ships could be shared among all interested stakeholders. This paper considers the possible application of distributed ledger technology as an aid for the control of overboard discharge of wastewater from commercial ships. The intended outcome is that it could help protect the environment by sending data to relevant stakeholders in real time, thus providing information regarding the best discharge areas. The use of a structured communal data transference would ensure a consistent and accurate way to transmit data to all interested parties, and would eliminate the need to fill in various paper forms and logs. Wastewater overboard discharges would be properly monitored, recorded and measured, as distributed ledger technology would prevent any possibility of illegal actions and falsification of documents, thus ensuring environmental sustainability.


Sign in / Sign up

Export Citation Format

Share Document