Design and Analysis of Serial/Parallel Type of Electromagnetic Actuator

Author(s):  
Kenta Takei ◽  
Wataru Kitagawa ◽  
Takaharu Takeshita ◽  
Yoshio Fujimura
2021 ◽  
pp. 107754632199822
Author(s):  
Jun Liu ◽  
Zhu Han ◽  
Rong Hu

To investigate vibration characteristics and delay crack propagations of an asymmetric cracked rotor, the 3D finite element model of the rotor system with a nonlinear contact method is established. Resonance characteristics of the asymmetrical rotor without a crack and within different locations of a crack are investigated systematically. Numerical results show that a crack affects vibration frequencies and the unstable region of the rotor. Meanwhile, an improved proportional integral differential control method with the electromagnetic actuator is used to accomplish the delay crack propagation and the vibration suppression. Based on the mapping model of opening and closing states of a crack, the effects of rotational speeds, an unbalance, and asymmetries of the rotor are discussed in detail. Experimental results show that vibrations and the breathing behavior of cracks in the rotor with the electromagnetic actuator can be suppressed, and the effectiveness of the proposed mapping model of opening and closing states of a crack is verified.


2021 ◽  
Vol 18 (2) ◽  
pp. 172988142199228
Author(s):  
Wendong Zhang ◽  
Wen Zhang ◽  
Zhenguo Sun

This article demonstrates a reconfigurable soft wall-climbing robot actuated by electromagnet. The robot follows the earthworm movement gait and is capable of translation, deflection, and rotation movement while working on a sloping ferromagnetic wall. Also the electromagnetic actuator provides a significant improvement in expeditiousness compared with existing actuation modes. The speed of the robot can be adjusted by modulating the power frequency. When the period of motion cycle is 30 ms, the speed is about 26.5 mm s−1, and the robot can rotate with a velocity of 14.1° s−1 on the horizontal plane. It can also climb a vertical wall at the speed of 12.6 mm s−1. The robot is composed of two kinds of modules which can be connected by the magnets embedded. It can also be reconfigured in different working conditions, such as crossing an inaccessible gap, and thus has the potential to be used in flaw detection, surface cleaning, and exploration of ferromagnetic structures.


2021 ◽  
Vol 11 (15) ◽  
pp. 6872
Author(s):  
Chien-Sheng Liu ◽  
Yi-Hsuan Lin ◽  
Chiu-Nung Yeh

In keeping with consumers’ preferences for electromagnetic motors of ever smaller power consumption, it is necessary to improve the power efficiency of the electromagnetic motors used in unmanned aerial vehicles and robots without sacrificing their performance. Three-degree-of-freedom (3-DOF) spherical motors have been developed for these applications. Accordingly, this study modifies the 3-DOF spherical motor proposed by Hirata’s group in a previous study (Heya, A.; Hirata, K.; Niguchi, N., Dynamic modeling and control of three-degree-of-freedom electromagnetic actuator for image stabilization, IEEE Transactions on Magnetics 2018, 54, 8207905.) to accomplish a 3-DOF spherical motor for camera module with higher torque output in the large rotation angle. The main contribution of this study is to improve the static torque in the X- and Y-axes with an improved electromagnetic structure and a particular controlling strategy. In the structural design, eight symmetrical coils with specific coil combination are used instead of conventional four symmetrical coils. In this study, the development of the proposed 3-DOF spherical motor was constructed and verified by using a 3D finite-element method (3D FEM). The simulation results show that the proposed 3-DOF spherical motor has higher torque output in the large rotation angle when compared to the original 3-DOF spherical motor.


Author(s):  
Gittiphong Sripanagul ◽  
Anirut Matthujak ◽  
Thanarath Sriveerakul ◽  
Sutthisak Phongthanapanich

Actuators ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 65
Author(s):  
Der-Fa Chen ◽  
Shen-Pao-Chi Chiu ◽  
An-Bang Cheng ◽  
Jung-Chu Ting

Electromagnetic actuator systems composed of an induction servo motor (ISM) drive system and a rice milling machine system have widely been used in agricultural applications. In order to achieve a finer control performance, a witty control system using a revised recurrent Jacobi polynomial neural network (RRJPNN) control and two remunerated controls with an altered bat search algorithm (ABSA) method is proposed to control electromagnetic actuator systems. The witty control system with finer learning capability can fulfill the RRJPNN control, which involves an attunement law, two remunerated controls, which have two evaluation laws, and a dominator control. Based on the Lyapunov stability principle, the attunement law in the RRJPNN control and two evaluation laws in the two remunerated controls are derived. Moreover, the ABSA method can acquire the adjustable learning rates to quicken convergence of weights. Finally, the proposed control method exhibits a finer control performance that is confirmed by experimental results.


Sign in / Sign up

Export Citation Format

Share Document