Optimised link state routing protocol as enabler of cooperative transmission for emergency communications

Author(s):  
Michal Wodczak
Author(s):  
Takeaki KOGA ◽  
Shigeaki TAGASHIRA ◽  
Teruaki KITASUKA ◽  
Tsuneo NAKANISHI ◽  
Akira FUKUDA

2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Farrukh Aslam Khan ◽  
Wang-Cheol Song ◽  
Khi-Jung Ahn

In this paper, the performance analysis of a hierarchical routing protocol for mobile ad hoc networks (MANETs) called Location-aware Grid-based Hierarchical Routing (LGHR) is performed. In LGHR, the network comprises nonoverlapping zones and each zone is further partitioned into smaller grids. Although LGHR is a location-aware routing protocol, the routing mechanism is similar to the link-state routing. The protocol overcomes some of the weaknesses of other existing location-based routing protocols such as Zone-based Hierarchical Link State (ZHLS) and GRID. A detailed analysis of the LGHR routing protocol is performed and its performance is compared with both the above-mentioned protocols. The comparison shows that LGHR works better than ZHLS in terms of storage overhead as well as communication overhead, whereas LGHR is more stable than GRID especially in scenarios where wireless nodes are moving with very high velocities.


Drones ◽  
2022 ◽  
Vol 6 (1) ◽  
pp. 22
Author(s):  
Esmot Ara Tuli ◽  
Mohtasin Golam ◽  
Dong-Seong Kim ◽  
Jae-Min Lee

The growing need for wireless communication has resulted in the widespread usage of unmanned aerial vehicles (UAVs) in a variety of applications. Designing a routing protocol for UAVs is paramount as well as challenging due to its dynamic attributes. The difficulty stems from features other than mobile ad hoc networks (MANET), such as aerial mobility in 3D space and frequently changing topology. This paper analyzes the performance of four topology-based routing protocols, dynamic source routing (DSR), ad hoc on-demand distance vector (AODV), geographic routing protocol (GRP), and optimized link state routing (OLSR), by using practical simulation software OPNET 14.5. Performance evaluation carries out various metrics such as throughput, delay, and data drop rate. Moreover, the performance of the OLSR routing protocol is enhanced and named “E-OLSR” by tuning parameters and reducing holding time. The optimized E-OLSR settings provide better performance than the conventional request for comments (RFC 3626) in the experiment, making it suitable for use in UAV ad hoc network (UANET) environments. Simulation results indicate the proposed E-OLSR outperforms the existing OLSR and achieves supremacy over other protocols mentioned in this paper.


Author(s):  
Unung Verawardina

In a dynamic routing setting a routing protocol is required to perform the settings to find the shortest and best path. Routing protocols are of two types: vector distance and link state. Use of EIGRP routing that includes long-range vectors and link state OSPF Link link state coverage, peg well to be implemented in complex network because it can adapt well. In this research is the method used for routing and speed of time available EIGRP routing and OSPF routing through simulator GNS3 and wireshark application, then analyze the difference of peformance with speed of routing table and speed of time. While for Quality of Service (QoS) compare network service quality from EIGRP and OSPF routing which include delay, packet loss, and throughput. Based on the results of the research shows the EIGRP routing table is better in the selection path, EIGRP smaller time tansfer data then its data transfer faster than the OSPF. Overall Quality Of Service (Qos) delay, packetloss and throughput on EIGRP and OSPF are well balanced and good.


Sign in / Sign up

Export Citation Format

Share Document