Method for Measurement of the Metabolic CO2 Concentration through a Small Climate Chamber

Author(s):  
Radostina A. Angelova ◽  
Detelin Markov ◽  
Rositsa Velichkova ◽  
Peter Stankov
Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8127
Author(s):  
Radostina A. Angelova ◽  
Detelin Markov ◽  
Rositsa Velichkova ◽  
Peter Stankov ◽  
Iskra Simova

People are the main reason for the deterioration of indoor air quality (IAQ) due to the continuous physiological metabolism processes in their bodies, including respiration. We present results from an investigation of the influence of indoor air temperature on the concentration of exhaled carbon dioxide (CO2). The investigation was preconditioned by previous findings on the effect of air temperature on human metabolism. However, our literature survey showed a lack of studies on the influence of the indoor air temperature on the exhaled CO2 (or metabolic CO2), which leads to the novelty of our results. Our experiments had two phases: measurement in a university classroom with an installed heating, ventilation, and air-conditioning (HVAC) system during regular classes and measurement in a specially designed small climate chamber, where the time variations of the CO2 concentrations, together with some physiological parameters, were measured. Two indoor air temperatures were set: 23 °C and 27 °C. The results obtained and their respective analyses show the strong effect of the two air temperatures on the CO2 concentration due to exhalation. In the classroom, the CO2 concentration at 27 °C was higher by 6.2% than at 23 °C. In the climate chamber, the CO2 concentration at 27 °C was higher by 9.6% than at 23 °C. Physiological parameters (oxygen saturation pressure, pulse rate, end-tidal CO2, and respiration rate) and their dependence on the air temperature were also measured in the climate chamber, establishing an effect of the temperature on the pulse rate.


2020 ◽  
Vol 65 (1) ◽  
pp. 5-11
Author(s):  
Anamaria Cenan ◽  
◽  
Daniela Mariana Ciorba ◽  
Keyword(s):  

2014 ◽  
Vol 13 (9) ◽  
pp. 2193-2200 ◽  
Author(s):  
Merike Fiedler ◽  
Chayan K. Saha ◽  
Christian Ammon ◽  
Werner Berg ◽  
Christiane Loebsin ◽  
...  

Fuel ◽  
2021 ◽  
Vol 304 ◽  
pp. 121403
Author(s):  
Fan Hu ◽  
Pengfei Li ◽  
Wenhao Li ◽  
Cuijiao Ding ◽  
Junjun Guo ◽  
...  

Author(s):  
Jindong Wu ◽  
Jiantao Weng ◽  
Bing Xia ◽  
Yujie Zhao ◽  
Qiuji Song

High indoor air quality is crucial for the health of human beings. The purpose of this work is to analyze the synergistic effect of particulate matter 2.5 (PM2.5) and carbon dioxide (CO2) concentration on occupant satisfaction and work productivity. This study carried out a real-scale experiments in a meeting room with exposures of up to one hour. Indoor environment parameters, including air temperature, relative humidity, illuminance, and noise level, were controlled at a reasonable level. Twenty-nine young participants were participated in the experiments. Four mental tasks were conducted to quantitatively evaluate the work productivity of occupants and a questionnaire was used to access participants’ satisfaction. The Spearman correlation analysis and two-way analysis of variance were applied. It was found that the overall performance declined by 1% for every 10 μg/m3 increase in PM2.5 concentration. Moreover, for every 10% increase in dissatisfaction with air quality, productivity performance decreased by 1.1% or more. It should be noted that a high CO2 concentration (800 ppm) has a stronger negative effect on occupant satisfaction towards air quality than PM2.5 concentration in a non-ventilated room. In order to obtain optimal occupant satisfaction and work productivity, low concentrations of PM2.5 (<50 μg/m3) and CO2 (<700 ppm) are recommended.


1973 ◽  
Vol 14 (2) ◽  
pp. 145-151
Author(s):  
William J. Longmore ◽  
Carolyn M. Niethe ◽  
Deborah J. Sprinkle ◽  
Rodolfo I. Godinez

Sign in / Sign up

Export Citation Format

Share Document