A new interface-trapped-charge-degraded subthreshold current model for cylindrical, surrounding-gate (CSRG) MOSFETs

Author(s):  
Te-Kuang Chiang ◽  
Hong-Wun Gao ◽  
Che-Wei Liu ◽  
Tsung-Ying Tsou ◽  
Yi-Hung Chiu
2019 ◽  
Vol 9 (2) ◽  
pp. 291-297
Author(s):  
Hind Jaafar ◽  
Abdellah Aouaj ◽  
Ahmed Bouziane ◽  
Benjamin Iñiguez

Background: A novel Dual Material Gate Graded Channel and Dual Oxide Thickness Cylindrical Gate (DMG-GC-DOT) MOSFET is presented in this paper. Methods: Analytical model of drain current is developed using a quasi-two-dimensional cylindrical form of the Poisson equation and is expressed as a function of the surface potential, which is calculated using the expressions of the current density. Results: Comparison of the analytical results with 3D numerical simulations using Silvaco Atlas - TCAD software presents a good agreement from subthreshold to strong inversion regime and for different bias voltages. Conclusion: Two oxide thicknesses with different permittivity can effectively improve the subthreshold current of DMG-GC-DOT MOSFET.


Sign in / Sign up

Export Citation Format

Share Document