Block Chain Based Cognitive Wireless Networks: Challenges & Applications

Author(s):  
Simran Taneja ◽  
Nikhil Marriwala
Author(s):  
Tuan Phung-Duc ◽  
Kohei Akutsu ◽  
Ken’ichi Kawanishi ◽  
Osama Salameh ◽  
Sabine Wittevrongel

2017 ◽  
Vol 17 (1) ◽  
pp. 104-112 ◽  
Author(s):  
Zijuan Shi ◽  
Gaofeng Luo

Abstract Auction is often applied in cognitive wireless networks due to its fairness properties and efficiency. To solve the allocation issues of cognitive wireless network inamulti-band spectrum, multi-item auction mechanism and models were discussed in depth. Multi-item highest price sealed auction was designed for cognitive wireless networks’multi-band spectrum allocation algorithm. This algorithm divided the spectrum allocation process into several stages which was along with low complexity. Experiments show that the algorithm improves the utilization of spectrum frequency, because it takes into account the spectrum owner’s economic efficiency and the users’equity.


2022 ◽  
pp. 1-16
Author(s):  
Nagaraj Varatharaj ◽  
Sumithira Thulasimani Ramalingam

Most revolutionary applications extending far beyond smartphones and high configured mobile device use to the future generation wireless networks’ are high potential capabilities in recent days. One of the advanced wireless networks and mobile technology is 5G, where it provides high speed, better reliability, and amended capacity. 5 G offers complete coverage, which is accommodates any IoT device, connectivity, and intelligent edge algorithms. So that 5 G has a high demand in a wide range of commercial applications. Ambrosus is a commercial company that integrates block-chain security, IoT network, and supply chain management for medical and food enterprises. This paper proposed a novel framework that integrates 5 G technology, Machine Learning (ML) algorithms, and block-chain security. The main idea of this work is to incorporate the 5 G technology into Machine learning architectures for the Ambrosus application. 5 G technology provides continuous connection among the network user/nodes, where choosing the right user, base station, and the controller is obtained by using for ML architecture. The proposed framework comprises 5 G technology incorporate, a novel network orchestration, Radio Access Network, and a centralized distributor, and a radio unit layer. The radio unit layer is used for integrating all the components of the framework. The ML algorithm is evaluated the dynamic condition of the base station, like as IoT nodes, Ambrosus users, channels, and the route to enhance the efficiency of the communication. The performance of the proposed framework is evaluated in terms of prediction by simulating the model in MATLAB software. From the performance comparison, it is noticed that the proposed unified architecture obtained 98.6% of accuracy which is higher than the accuracy of the existing decision tree algorithm 97.1% .


Author(s):  
Liang Song ◽  
Petros Spachos ◽  
Dimitrios Hatzinakos

Cognitive radio has been proposed to have spectrum agility (or opportunistic spectrum access). In this chapter, the authors introduce the extended network architecture of cognitive radio network, which accesses not only spectrum resource but also wireless stations (networking nodes) and high-level application data opportunistically: the large-scale cognitive wireless networks. The developed network architecture is based upon a re-definition of wireless linkage: as functional abstraction of proximity communications among wireless stations. The operation spectrum and participating stations of such abstract wireless links are opportunistically decided based on their instantaneous availability. It is able to maximize wireless network resource utilization and achieve much higher performance in large-scale wireless networks, where the networking environment can change fast (usually in millisecond level) in terms of spectrum and wireless station availability. The authors further introduce opportunistic routing and opportunistic data aggregation under the developed network architecture, which results in an implementation of cognitive unicast and cognitive data-aggregation wireless-link modules. In both works, it is shown that network performance and energy efficiency can improve with network scale (such as including station density). The applications of large-scale cognitive wireless networks are further discussed in new (and smart) beyond-3G wireless infrastructures, including for example real-time wireless sensor networks, indoor/underground wireless tracking networks, broadband wireless networks, smart grid and utility networks, smart vehicular networks, and emergency networks. In all such applications, the cognitive wireless networks can provide the most cost-effective wireless bandwidth and the best energy efficiency.


Sign in / Sign up

Export Citation Format

Share Document