scholarly journals A High-Efficiency High-Density Wide-Bandgap Device-Based Bidirectional On-Board Charger

Author(s):  
Bin Li ◽  
Qiang Li ◽  
Fred C. Lee ◽  
Zhengyang Liu ◽  
Yuchen Yang
2021 ◽  
Vol MA2021-02 (32) ◽  
pp. 953-953
Author(s):  
Mark S. Goorsky ◽  
Michael Evan Liao ◽  
Kenny Huynh ◽  
Yekan Steven Wang ◽  
Brandon Carson ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 2022 ◽  
Author(s):  
Maryam Mesgarpour Tousi ◽  
Mona Ghassemi

Our previous studies showed that geometrical techniques including (1) metal layer offset, (2) stacked substrate design and (3) protruding substrate, either individually or combined, cannot solve high electric field issues in high voltage high-density wide bandgap (WBG) power modules. Then, for the first time, we showed that a combination of the aforementioned geometrical methods and the application of a nonlinear field-dependent conductivity (FDC) layer could address the issue. Simulations were done under a 50 Hz sinusoidal AC voltage per IEC 61287-1. However, in practice, the insulation materials of the envisaged WBG power modules will be under square wave voltage pulses with a frequency of up to a few tens of kHz and temperatures up to a few hundred degrees. The relative permittivity and electrical conductivity of aluminum nitride (AlN) ceramic, silicone gel, and nonlinear FDC materials that were assumed to be constant in our previous studies, may be frequency- and temperature-dependent, and their dependency should be considered in the model. This is the case for other papers dealing with electric field calculation within power electronics modules, where the permittivity and AC electrical conductivity of the encapsulant and ceramic substrate materials are assumed at room temperature and for a 50 or 60 Hz AC sinusoidal voltage. Thus, the big question that remains unanswered is whether or not electric field simulations are valid for high temperature and high-frequency conditions. In this paper, this technical gap is addressed where a frequency- and temperature-dependent finite element method (FEM) model of the insulation system envisaged for a 6.5 kV high-density WBG power module will be developed in COMSOL Multiphysics, where a protruding substrate combined with the application of a nonlinear FDC layer is considered to address the high field issue. By using this model, the influence of frequency and temperature on the effectiveness of the proposed electric field reduction method is studied.


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2156 ◽  
Author(s):  
Byeong Hoon Bae ◽  
Jeong Woo Lee ◽  
Jae Min Cha ◽  
Il-Won Kim ◽  
Hyun-Do Jung ◽  
...  

Powder bed fusion (PBF) additive manufacturing (AM) is currently used to produce high-efficiency, high-density, and high-performance products for a variety of applications. However, existing AM methods are applicable only to metal materials and not to high-melting-point ceramics. Here, we develop a composite material for PBF AM by adding Al2O3 to a glass material using laser melting. Al2O3 and a black pigment are added to a synthesized glass frit for improving the composite strength and increased laser-light absorption, respectively. Our sample analysis shows that the glass melts to form a composite when the mixture is laser-irradiated. To improve the sintering density, we heat-treat the sample at 750 °C to synthesize a high-density glass frit composite. As per our X-ray diffraction (XRD) analysis to confirm the reactivity of the glass frit and Al2O3, we find that no reactions occur between glass and crystalline Al2O3. Moreover, we obtain a high sample density of ≥95% of the theoretical density. We also evaluate the composite’s mechanical properties as a function of the Al2O3 content. Our approach facilitates the manufacturing of ceramic 3D structures using glass materials through PBF AM and affords the benefits of reduced process cost, improved performance, newer functionalities, and increased value addition.


2020 ◽  
Vol 8 (27) ◽  
pp. 9195-9200
Author(s):  
Jun Zhang ◽  
Jie Lv ◽  
Xiyue Dong ◽  
Tongle Xu ◽  
Xuexin Dai ◽  
...  

Wide-bandgap non-fullerene acceptors (NFAs) are in high demand for constructing efficient ternary or tandem organic solar cells (OSCs), yet the scarcity of them remains an important issue that needs exploration and perfection.


2010 ◽  
Vol 1245 ◽  
Author(s):  
Jenny H. Shim ◽  
W.K. Yoon ◽  
S.T. Hwang ◽  
S.W. Ahn ◽  
H.M. Lee

AbstractStudies have shown that wide bandgap material is required for high efficiency multi-junction solar cell applications. Here, we address proper deposition condition for high quality a-SiC:H films. In high power high pressure regime, we observed that the defect density get much lowered to the similar defect level of a-Si:H film with high H2 dilution. Single junction solar cells fabricated with the optimized condition show high open circuit voltage and low LID effect. The degradation after the LID test was only 13 % reduction of the efficiency indicating that a-SiC:H could be promising material for multi-junction solar cells.


Sign in / Sign up

Export Citation Format

Share Document