A Hybrid Two-Stage Control Solution for Six-Phase PMSM Motor with Improved Performance

Author(s):  
Yixiao Luo ◽  
Xiaodong Zhang ◽  
Shuangxia Niu
Author(s):  
Dean Follmann ◽  
Michael Proschan

Phase III platform trials are increasingly used to evaluate a sequence of treatments for a specific disease. Traditional approaches to structure such trials tend to focus on the sequential questions rather than the performance of the entire enterprise. We consider two-stage trials where an early evaluation is used to determine whether to continue with an individual study. To evaluate performance, we use the ratio of expected wins (RW), that is, the expected number of reported efficacious treatments using a two-stage approach compared to that using standard phase III trials. We approximate the test statistics during the course of a single trial using Brownian Motion and determine the optimal stage 1 time and type I error rate to maximize RW for fixed power. At times, a surrogate or intermediate endpoint may provide a quicker read on potential efficacy than use of the primary endpoint at stage 1. We generalize our approach to the surrogate endpoint setting and show improved performance, provided a good quality and powerful surrogate is available. We apply our methods to the design of a platform trial to evaluate treatments for COVID-19 disease.


Author(s):  
Yanbing Xue ◽  
Milos Hauskrecht

In this paper we develop and study solutions for the multi-label ranking (MLR) problem. Briefly, the goal of multi-label ranking is not only to assign a set of relevant labels to a data instance but also to rank the labels according to their importance. To do so we propose a two-stage model that consists of: (1) a multi-label classification model that first selects an unordered set of labels for a data instance, and, (2) a label ordering model that orders the selected labels post-hoc in order of their importance. The advantage of such a model is that it can represent both the dependencies among labels, as well as, their importance. We evaluate the performance of our framework on both simulated and real-world datasets and show its improved performance compared to the existing multiple-label ranking solutions.


Author(s):  
Sengshiu Chung ◽  
Peggy Cebe

We are studying the crystallization and annealing behavior of high performance polymers, like poly(p-pheny1ene sulfide) PPS, and poly-(etheretherketone), PEEK. Our purpose is to determine whether PPS, which is similar in many ways to PEEK, undergoes reorganization during annealing. In an effort to address the issue of reorganization, we are studying solution grown single crystals of PPS as model materials.Observation of solution grown PPS crystals has been reported. Even from dilute solution, embrionic spherulites and aggregates were formed. We observe that these morphologies result when solutions containing uncrystallized polymer are cooled. To obtain samples of uniform single crystals, we have used two-stage self seeding and solution replacement techniques.


Author(s):  
Gertrude. F. Rempfer

Optimum performance in electron and ion imaging instruments, such as electron microscopes and probe-forming instruments, in most cases depends on a compromise either between imaging errors due to spherical and chromatic aberrations and the diffraction error or between the imaging errors and the current in the image. These compromises result in the use of very small angular apertures. Reducing the spherical and chromatic aberration coefficients would permit the use of larger apertures with resulting improved performance, granted that other problems such as incorrect operation of the instrument or spurious disturbances do not interfere. One approach to correcting aberrations which has been investigated extensively is through the use of multipole electric and magnetic fields. Another approach involves the use of foil windows. However, a practical system for correcting spherical and chromatic aberration is not yet available.Our approach to correction of spherical and chromatic aberration makes use of an electrostatic electron mirror. Early studies of the properties of electron mirrors were done by Recknagel. More recently my colleagues and I have studied the properties of the hyperbolic electron mirror as a function of the ratio of accelerating voltage to mirror voltage. The spherical and chromatic aberration coefficients of the mirror are of opposite sign (overcorrected) from those of electron lenses (undercorrected). This important property invites one to find a way to incorporate a correcting mirror in an electron microscope. Unfortunately, the parts of the beam heading toward and away from the mirror must be separated. A transverse magnetic field can separate the beams, but in general the deflection aberrations degrade the image. The key to avoiding the detrimental effects of deflection aberrations is to have deflections take place at image planes. Our separating system is shown in Fig. 1. Deflections take place at the separating magnet and also at two additional magnetic deflectors. The uncorrected magnified image formed by the objective lens is focused in the first deflector, and relay lenses transfer the image to the separating magnet. The interface lens and the hyperbolic mirror acting in zoom fashion return the corrected image to the separating magnet, and the second set of relay lenses transfers the image to the final deflector, where the beam is deflected onto the projection axis.


2007 ◽  
Vol 177 (4S) ◽  
pp. 121-121
Author(s):  
Antonio Dessanti ◽  
Diego Falchetti ◽  
Marco Iannuccelli ◽  
Susanna Milianti ◽  
Gian P. Strusi ◽  
...  
Keyword(s):  

2007 ◽  
Vol 177 (4S) ◽  
pp. 120-120
Author(s):  
Pamela I. Ellsworth ◽  
Anthony Caldamone
Keyword(s):  

2005 ◽  
Vol 38 (18) ◽  
pp. 68
Author(s):  
SHARON WORCESTER
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document