Long-Range Propagation of Low-Frequency Radio Waves between the Earth and the Ionosphere

1956 ◽  
Vol 44 (2) ◽  
pp. 163-170 ◽  
Author(s):  
J. Shmoys
2015 ◽  
Vol 11 (A29B) ◽  
pp. 367-369
Author(s):  
Lawrence Teitelbaum ◽  
Walid Majid ◽  
Manuel M. Franco ◽  
Daniel J. Hoppe ◽  
Shinji Horiuchi ◽  
...  

AbstractMillisecond pulsars (MSPs) are a class of radio pulsars with extremely stable rotation. Their excellent timing stability can be used to study a wide variety of astrophysical phenomena. In particular, a large sample of these pulsars can be used to detect low-frequency gravitational waves. We have developed a precision pulsar timing backend for the NASA Deep Space Network (DSN), which will allow the use of short gaps in tracking schedules to time pulses from an ensemble of MSPs. The DSN operates clusters of large dish antennas (up to 70-m in diameter), located roughly equidistant around the Earth, for communication and tracking of deep-space spacecraft. The backend system will be capable of removing entirely the dispersive effects of propagation of radio waves through the interstellar medium in real-time. We will describe our development work, initial results, and prospects for future observations over the next few years.


The propagation of radio waves of very low frequency to great distances is conveniently treated by regarding the space between the earth and the ionosphere as a wave-guide. Several authors have found that the least attenuated modes are profoundly affected by the earth’s curvature. This effect is investigated for several models of the ionosphere. It is found, in particular, that for frequencies greater than about 30 kc/s some modes are possible for which the energy is concentrated in a region near the base of the ionosphere, and the field strength near the ground is small. It is useful to think of such modes as being composed of waves repeatedly reflected at the inside spherical surface of the ionosphere, the rays being chords of this sphere. By analogy with sound waves these modes are called ‘whispering gallery modes’. The theory uses wave admittance and reflexion coefficient variables because these satisfy differential equations which are convenient for integration using a digital computer. The curvature of the earth is allowed for by using the method of the modified refractive index, but the earth’s magnetic field is neglected. Formulae for the m ode condition and the excitation of the various modes by a transmitter are given and discussed. A new way of dealing with an ionosphere having a continuous electron density profile is presented. The results of some numerical calculations are given both for a sharply bounded homogeneous ionosphere and for an exponential profile of electron density.


2011 ◽  
Vol 28 (8) ◽  
pp. 993-1006 ◽  
Author(s):  
A. J. Bennett ◽  
C. Gaffard ◽  
J. Nash ◽  
G. Callaghan ◽  
N. C. Atkinson

Abstract The arrival time difference (ATD) long-range lightning location network (ATDnet) is the long-range very low frequency (VLF) lightning location network owned and operated by the Met Office, locating lightning using a waveform correlation technique. Pronounced differences in the waveform shape with distance to lightning have been observed and attributed to interference between different propagation modes within the earth–ionosphere waveguide. During the day, waveform correlations were significantly degraded at a distance of 450 km from the sensor, with the main degradations occurring during the night centered at propagation distances of 650 and 2150 km. The observation and simple modeling of modal interference spacing allowed the effective ionospheric height during summer over Europe to be estimated for day and night as 69 and 88.5 km, respectively, for 13.7 kHz. Wider distribution of sensor sites, lowering of the receiver frequency, and adaptation of the reference waveform selection criteria have been suggested to mitigate the effect of this interference on network performance.


2021 ◽  
Author(s):  
József Bór ◽  
István Lemperger ◽  
Karolina Szabóné André ◽  
Tamás Bozóki ◽  
Janusz Mlynarczyk ◽  
...  

<p>Q-bursts are signatures of exceptionally powerful lightning strokes which produce intense radio waves typically in the extremely low frequency band (ELF, 3Hz-3kHz). Due to the finite conductivity of the Earth’s surface, radio waves in this frequency range can be also detected in greater depths. While the penetration of electromagnetic (EM) waves in a conducting half space has been investigated and utilized, e.g., under water for submarine radio communication, very few field measurements consider the subsurface detection of ELF waves in the continental crust.</p><p>In this work, Q-bursts recorded in near surface and corresponding underground ELF band observations are compared in order to characterize the frequency dependent effect of the upper section of the Earth’s crust on the spectrum of the Q-burst signals.</p><p>Practically co-located, but not simultaneous quasi-surface and underground temporal ELF band magnetic field measurements were made near Mátraszentimre, in the Mátra Mountains, Hungary. The underground measurement was carried out inside a mine shaft in the Matra Gravitational and Geophysical Laboratory (MGGL) at a depth of 140 m. ELF observations from two permanent recording stations in the Széchenyi István Geophysical Observatory (NCK, Hungary) and in Hylaty (HYL, Poland), less than 250 km away from MGGL, were involved in the analysis to deduce the transfer function between the unsynchronized quasi-surface and underground measurements in the Mátra.</p><p>The set of Q-bursts, which were parallelly detected at all three locations, was identified using GPS synchronized time stamps. Natural origin of the signals was confirmed by identifying the parent lightning strokes in the database of the World Wide Lightning Location Network (WWLLN) via matching the detection times and the corresponding source directions calculated at NCK station.</p><p>The good agreement of the results from independent Matra-NCK (5-30 Hz) and Matra-HYL (5-140 Hz) station-pairwise analyses confirm that the frequency dependence of the wave attenuation due to overlying rocks is exponential. The deduced integrated local conductivity, 30-40 S/m, of the upper section of the Earth’s crust suggests that probably the soil has prominent role in attenuating ground penetrating EM waves in the ELF band.</p>


1989 ◽  
Vol 42 (2) ◽  
pp. 236-247
Author(s):  
R. Barr ◽  
K. B. Young

1. INTRODUCTION. Very-low-frequency radio waves were used to implement the Omega navigation system because of their low attenuation (2–4 dB/1000 km) when propagating globally in the waveguide formed between the Earth and the ionosphere. However, it became apparent in the early seventies, throughout the period when the majority of the stations of the Omega network were commissioned, that VLF signals propagating over permafrost or glacial ice could suffer anomalously large attenuations, of greater than 20 dB/1000 km, especially during the daytime. In the Northern Hemisphere problems have arisen with the heavy attenuation of Omega signals propagating over the Greenland ice sheet. In particular a very bad region for Omega coverage occurs around Winnipeg in Canada (the ‘Winnipeg Hole’). In this area Omega North Dakota suffers from ‘near field’ effects, Omega Liberia is contaminated by trans-equatorial modal effects and Omega Norway is removed by the attenuation of its signals when crossing the Greenland ice-cap. There have even been discussions on the feasibility of constructing extra VLF transmitters in Canada to alleviate this problem.


Author(s):  
Bagus Septyanto ◽  
Dian Nurdiana ◽  
Sitti Ahmiatri Saptari

In general, surface positioning using a global satellite navigation system (GNSS). Many satellites transmit radio signals to the surface of the earth and it was detected by receiver sensors into a function of position and time. Radio waves really bad when spreading in water. So, the underwater positioning uses acoustic wave. One type of underwater positioning is USBL. USBL is a positioning system based on measuring the distance and angle. Based on distance and angle, the position of the target in cartesian coordinates can be calculated. In practice, the effect of ship movement is one of the factors that determine the accuracy of the USBL system. Ship movements like a pitch, roll, and orientation that are not defined by the receiver could changes the position of the target in X, Y and Z coordinates. USBL calibration is performed to detect an error angle. USBL calibration is done by two methods. In USBL calibration Single Position obtained orientation correction value is 1.13 ̊ and a scale factor is 0.99025. For USBL Quadrant calibration, pitch correction values is -1.05, Roll -0.02 ̊, Orientation 6.82 ̊ and scale factor 0.9934 are obtained. The quadrant calibration results deccrease the level of error position to 0.276 - 0.289m at a depth of 89m and 0.432m - 0.644m at a depth of 76m


1987 ◽  
Vol 33 (114) ◽  
pp. 239-242
Author(s):  
M. E. R. Walford

AbstractWe discuss the suggestion that small underwater transmitters might be used to illuminate the interior of major englacial water channels with radio waves. Once launched, the radio waves would naturally tend to be guided along the channels until attenuated by absorption and by radiative loss. Receivers placed within the channels or at the glacier surface could be used to detect the signals. They would provide valuable information about the connectivity of the water system. The electrical conductivity of the water is of crucial importance. A surface stream on Storglaciären, in Sweden, was found, using a low-frequency technique, to have a conductivity of approximately 4 × 10−4 S m−1. Although this is several hundred times higher than the conductivity of the surrounding glacier ice, the contrast is not sufficient to permit us simply to use electrical conductivity measurements to establish the connectivity of englacial water channels. However, the water conductivity is sufficiently small that, under favourable circumstances, radio signals should be detectable after travelling as much as a few hundred metres along an englacial water channel. In a preliminary field experiment, we demonstrated semi quantitatively that radio waves do indeed propagate as expected, at least in surface streams. We conclude that under-water radio transmitters could be of real practical value in the study of the englacial water system, provided that sufficiently robust devices can be constructed. In a subglacial channel, however, we expect the radio range would be much smaller, the environment much harsher, and the technique of less practical value.


2012 ◽  
Vol 25 (6) ◽  
pp. 1814-1826 ◽  
Author(s):  
Dimitrios Giannakis ◽  
Andrew J. Majda

Abstract An information-theoretic framework is developed to assess the predictive skill and model error in imperfect climate models for long-range forecasting. Here, of key importance is a climate equilibrium consistency test for detecting false predictive skill, as well as an analogous criterion describing model error during relaxation to equilibrium. Climate equilibrium consistency enforces the requirement that long-range forecasting models should reproduce the climatology of prediction observables with high fidelity. If a model meets both climate consistency and the analogous criterion describing model error during relaxation to equilibrium, then relative entropy can be used as an unbiased superensemble measure of the model’s skill in long-range coarse-grained forecasts. As an application, the authors investigate the error in modeling regime transitions in a 1.5-layer ocean model as a Markov process and identify models that are strongly persistent but their predictive skill is false. The general techniques developed here are also useful for estimating predictive skill with model error for Markov models of low-frequency atmospheric regimes.


Sign in / Sign up

Export Citation Format

Share Document