Simulation and Comprehensive Analysis of Fluoride Fiber SPR Sensor With Multilayer Variants of 2D Materials (Graphene and MoS2) Under Optimum Radiation Damping in NIR

2019 ◽  
Vol 19 (19) ◽  
pp. 8775-8780
Author(s):  
Anuj Kumar Sharma ◽  
Jegyasu Gupta
Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1542 ◽  
Author(s):  
Anuj K. Sharma ◽  
Ankit Kumar Pandey ◽  
Baljinder Kaur

Two-dimensional (2D) heterostructure materials show captivating properties for application in surface plasmon resonance (SPR) sensors. A fluoride fiber-based SPR sensor is proposed and simulated with the inclusion of a 2D heterostructure as the analyte interacting layer. The monolayers of two 2D heterostructures (BlueP/MoS2 and BlueP/WS2, respectively) are considered in near infrared (NIR). In NIR, an HBL (62HfF4-33BaF2-5LaF3) fluoride glass core and NaF clad are considered. The emphasis is placed on figure of merit (FOM) enhancement via optimization of radiation damping through simultaneous tuning of Ag thickness (dm) and NIR wavelength (λ) at the Ag-2D heterostructure–analyte interfaces. Field distribution analysis is performed in order to understand the interaction of NIR signal with analyte at optimum radiation damping (ORD) condition. While the ORD leads to significantly larger FOM for both, the BlueP/MoS2 (FOM = 19179.69 RIU−1 (RIU: refractive index unit) at dm = 38.2 nm and λ = 813.4 nm)-based sensor shows massively larger FOM compared with the BlueP/WS2 (FOM = 7371.30 RIU−1 at dm = 38.2 nm and λ = 811.2 nm)-based sensor. The overall sensing performance was more methodically evaluated in terms of the low degree of photodamage of the analyte, low signal scattering, high power loss, and large field variation. The BlueP/MoS2-based fiber SPR sensor under ORD conditions opens up new paths for biosensing with highly enhanced overall performance.


Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 173 ◽  
Author(s):  
Xiaoyu Dai ◽  
Yanzhao Liang ◽  
Yuting Zhao ◽  
Shuaiwen Gan ◽  
Yue Jia ◽  
...  

Single layers of tin selenide (SnSe), which have a similar structure as graphene and phosphorene, also show excellent optoelectronic properties, and have received much attention as a two-dimensional (2D) material beyond other 2D material family members. Surface plasmon resonance (SPR) sensors based on three monolayer SnSe allotropes are investigated with the transfer matrix method. The simulated results have indicated that the proposed SnSe-containing biochemical sensors are suitable to detect different types of analytes. Compared with the conventional Ag-only film biochemical sensor whose sensitivity is 116°/RIU, the sensitivities of these SnSe-based biochemical sensors containing α-SnSe, δ-SnSe, ε-SnSe, were obviously increased to 178°/RIU, 156°/RIU and 154°/RIU, respectively. The diverse biosensor sensitivities achieved with these three SnSe allotropes suggest that these 2D materials can adjust SPR sensor properties.


Photonics ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 270
Author(s):  
Pengyu Zhang ◽  
Junxian Wang ◽  
Guoquan Chen ◽  
Jian Shen ◽  
Chaoyang Li ◽  
...  

In this paper, we reported a theoretical study of a novel Surface plasmon resonance (SPR) biosensor composed of BK7 prism, gold (Au)/silver (Ag) bimetallic layer, silicon and two-dimensional (2D) materials. The bimetallic layer combines the advantages of Au and Ag and the high refractive index silicon layer enhances the electric field on the surface of the sensor, so that the sensor has a better overall performance in terms of sensitivity and figure of merit (FOM). Compared with ordinary dielectrics, 2D materials have excellent photoelectric properties, such as larger specific surface area, higher carrier density and stronger adsorption capacity, which improve the detection ability of the sensor. The sensitivity of the optimized sensor achieves 297.2°/RIU, 274°/RIU and 246°/RIU when the silicon layer is covered with graphene, MXene (Ti3T2Cx) and MoS2, respectively. Compared with the traditional SPR sensor, the sensitivity of the structure has been significantly improved, and its excellent performance has broad application prospects in biosensing and other fields.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2445 ◽  
Author(s):  
Zhining Lin ◽  
Shujing Chen ◽  
Chengyou Lin

In this paper, we propose a surface plasmon resonance (SPR) sensor based on two-dimensional (2D) materials (graphene, MoS2, WS2 and WSe2) hybrid structure, and theoretically investigate its sensitivity improvement in the visible region. The thickness of metal (Au, Ag or Cu) and the layer number of each 2D material are optimized using genetic algorithms to obtain the highest sensitivity for a specific wavelength of incident light. Then, the sensitivities of proposed SPR sensors with different metal films at various wavelengths are compared. An Ag-based SPR sensor exhibits a higher sensitivity than an Au- or Cu-based one at most wavelengths in the visible region. In addition, the sensitivity of the proposed SPR sensor varies obviously with the wavelength of incident light, and shows a maximum value of 159, 194 or 155°/RIU for Au, Ag or Cu, respectively. It is demonstrated that the sensitivity of the SPR sensor based on 2D materials’ hybrid structure can be further improved by optimizing the wavelength of incident light.


Author(s):  
Minu Mathew ◽  
Chandra Sekhar Rout

This review details the fundamentals, working principles and recent developments of Schottky junctions based on 2D materials to emphasize their improved gas sensing properties including low working temperature, high sensitivity, and selectivity.


Sign in / Sign up

Export Citation Format

Share Document