Selection of Bone fragility-Related Features Obtained with Bi-Directional Axial Transmission, Through a Machine Learning Strategy

Author(s):  
Diego Miranda ◽  
Rodrigo Olivares ◽  
Roberto Munoz ◽  
Jean-Gabriel Minonzio
2020 ◽  
Vol 15 ◽  
Author(s):  
Deeksha Saxena ◽  
Mohammed Haris Siddiqui ◽  
Rajnish Kumar

Background: Deep learning (DL) is an Artificial neural network-driven framework with multiple levels of representation for which non-linear modules combined in such a way that the levels of representation can be enhanced from lower to a much abstract level. Though DL is used widely in almost every field, it has largely brought a breakthrough in biological sciences as it is used in disease diagnosis and clinical trials. DL can be clubbed with machine learning, but at times both are used individually as well. DL seems to be a better platform than machine learning as the former does not require an intermediate feature extraction and works well with larger datasets. DL is one of the most discussed fields among the scientists and researchers these days for diagnosing and solving various biological problems. However, deep learning models need some improvisation and experimental validations to be more productive. Objective: To review the available DL models and datasets that are used in disease diagnosis. Methods: Available DL models and their applications in disease diagnosis were reviewed discussed and tabulated. Types of datasets and some of the popular disease related data sources for DL were highlighted. Results: We have analyzed the frequently used DL methods, data types and discussed some of the recent deep learning models used for solving different biological problems. Conclusion: The review presents useful insights about DL methods, data types, selection of DL models for the disease diagnosis.


2021 ◽  
pp. 0887302X2199594
Author(s):  
Ahyoung Han ◽  
Jihoon Kim ◽  
Jaehong Ahn

Fashion color trends are an essential marketing element that directly affect brand sales. Organizations such as Pantone have global authority over professional color standards by annually forecasting color palettes. However, the question remains whether fashion designers apply these colors in fashion shows that guide seasonal fashion trends. This study analyzed image data from fashion collections through machine learning to obtain measurable results by web-scraping catwalk images, separating body and clothing elements via machine learning, defining a selection of color chips using k-means algorithms, and analyzing the similarity between the Pantone color palette (16 colors) and the analysis color chips. The gap between the Pantone trends and the colors used in fashion collections were quantitatively analyzed and found to be significant. This study indicates the potential of machine learning within the fashion industry to guide production and suggests further research expand on other design variables.


2021 ◽  
Vol 23 (4) ◽  
pp. 2742-2752
Author(s):  
Tamar L. Greaves ◽  
Karin S. Schaffarczyk McHale ◽  
Raphael F. Burkart-Radke ◽  
Jason B. Harper ◽  
Tu C. Le

Machine learning models were developed for an organic reaction in ionic liquids and validated on a selection of ionic liquids.


2021 ◽  
Vol 209 ◽  
pp. 104493
Author(s):  
Haili Liao ◽  
Hanyu Mei ◽  
Gang Hu ◽  
Bo Wu ◽  
Qi Wang

Author(s):  
Zhongyu Wan ◽  
Quan-De Wang ◽  
Dongchang Liu ◽  
Jinhu Liang

Enzyme-catalyzed synthesis reactions are of crucial importance for a wide range of applications. An accurate and rapid selection of optimal synthesis conditions is crucial and challenging for both human knowledge...


Procedia CIRP ◽  
2021 ◽  
Vol 96 ◽  
pp. 272-277
Author(s):  
Hannah Lickert ◽  
Aleksandra Wewer ◽  
Sören Dittmann ◽  
Pinar Bilge ◽  
Franz Dietrich

2021 ◽  
Author(s):  
Tom Young ◽  
Tristan Johnston-Wood ◽  
Volker L. Deringer ◽  
Fernanda Duarte

Predictive molecular simulations require fast, accurate and reactive interatomic potentials. Machine learning offers a promising approach to construct such potentials by fitting energies and forces to high-level quantum-mechanical data, but...


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Go-Eun Yu ◽  
Younhee Shin ◽  
Sathiyamoorthy Subramaniyam ◽  
Sang-Ho Kang ◽  
Si-Myung Lee ◽  
...  

AbstractBellflower is an edible ornamental gardening plant in Asia. For predicting the flower color in bellflower plants, a transcriptome-wide approach based on machine learning, transcriptome, and genotyping chip analyses was used to identify SNP markers. Six machine learning methods were deployed to explore the classification potential of the selected SNPs as features in two datasets, namely training (60 RNA-Seq samples) and validation (480 Fluidigm chip samples). SNP selection was performed in sequential order. Firstly, 96 SNPs were selected from the transcriptome-wide SNPs using the principal compound analysis (PCA). Then, 9 among 96 SNPs were later identified using the Random forest based feature selection method from the Fluidigm chip dataset. Among six machines, the random forest (RF) model produced higher classification performance than the other models. The 9 SNP marker candidates selected for classifying the flower color classification were verified using the genomic DNA PCR with Sanger sequencing. Our results suggest that this methodology could be used for future selection of breeding traits even though the plant accessions are highly heterogeneous.


Sign in / Sign up

Export Citation Format

Share Document