IEEE 802.11ay: Next-Generation 60 GHz Communication for 100 Gb/s Wi-Fi

2017 ◽  
Vol 55 (12) ◽  
pp. 186-192 ◽  
Author(s):  
Yasaman Ghasempour ◽  
Claudio R. C. M. da Silva ◽  
Carlos Cordeiro ◽  
Edward W. Knightly
Keyword(s):  
60 Ghz ◽  
Author(s):  
Thiago R. Raddo ◽  
Simon Rommel ◽  
Bruno Cimoli ◽  
Chris Vagionas ◽  
Diego Perez-Galacho ◽  
...  

AbstractThe sixth generation (6G) mobile systems will create new markets, services, and industries making possible a plethora of new opportunities and solutions. Commercially successful rollouts will involve scaling enabling technologies, such as cloud radio access networks, virtualization, and artificial intelligence. This paper addresses the principal technologies in the transition towards next generation mobile networks. The convergence of 6G key-performance indicators along with evaluation methodologies and use cases are also addressed. Free-space optics, Terahertz systems, photonic integrated circuits, softwarization, massive multiple-input multiple-output signaling, and multi-core fibers, are among the technologies identified and discussed. Finally, some of these technologies are showcased in an experimental demonstration of a mobile fronthaul system based on millimeter 5G NR OFDM signaling compliant with 3GPP Rel. 15. The signals are generated by a bespoke 5G baseband unit and transmitted through both a 10 km prototype multi-core fiber and 4 m wireless V-band link using a pair of directional 60 GHz antennas with 10° beamwidth. Results shown that the 5G and beyond fronthaul system can successfully transmit signals with both wide bandwidth (up to 800 MHz) and fully centralized signal processing. As a result, this system can support large capacity and accommodate several simultaneous users as a key candidate for next generation mobile networks. Thus, these technologies will be needed for fully integrated, heterogeneous solutions to benefit from hardware commoditization and softwarization. They will ensure the ultimate user experience, while also anticipating the quality-of-service demands that future applications and services will put on 6G networks.


Frequenz ◽  
2017 ◽  
Vol 71 (9-10) ◽  
pp. 389-398
Author(s):  
Xiaohang Song ◽  
Darko Cvetkovski ◽  
Tim Hälsig ◽  
Wolfgang Rave ◽  
Gerhard Fettweis ◽  
...  

Abstract The evolution to ultra-dense next generation networks requires a massive increase in throughput and deployment flexibility. Therefore, novel wireless backhaul solutions that can support these demands are needed. In this work we present an approach for a millimeter wave line-of-sight MIMO backhaul design, targeting transmission rates in the order of 100 Gbit/s. We provide theoretical foundations for the concept showcasing its potential, which are confirmed through channel measurements. Furthermore, we provide insights into the system design with respect to antenna array setup, baseband processing, synchronization, and channel equalization. Implementation in a 60 GHz demonstrator setup proves the feasibility of the system concept for high throughput backhauling in next generation networks.


2022 ◽  
Vol 2022 ◽  
pp. 1-15
Author(s):  
Usman Rauf Kamboh ◽  
Muhammad Rehman Shahid ◽  
Hamza Aldabbas ◽  
Ammar Rafiq ◽  
Bader Alouffi ◽  
...  

For the last two decades, cybercrimes are growing on a daily basis. To track down cybercrimes and radio network crimes, digital forensic for radio networks provides foundations. The data transfer rate for the next-generation wireless networks would be much greater than today’s network in the coming years. The fifth-generation wireless systems are considering bands beyond 6 GHz. The network design of the next-generation wireless systems depends on propagation characteristics, frequency reuse, and bandwidth variation. This article declares the channel’s propagation characteristics of both line of sight (LoS) and non-LOS (NLoS) to construct and detect the path of rays coming from anomalies. The simulations were carried out to investigate the diffraction loss (DL) and frequency drop (FD). Indoor and outdoor measurements were taken with the omnidirectional circular dipole antenna with a transmitting frequency of 28 GHz and 60 GHz to compare the two bands of the 5th generation. Millimeter-wave communication comes with a higher constraint for implementing and deploying higher losses, low diffractions, and low signal penetrations for the mentioned two bands. For outdoor, a MATLAB built-in 3D ray tracing algorithm is used while for an indoor office environment, an in-house algorithmic simulator built using MATLAB is used to analyze the channel characteristics.


Sign in / Sign up

Export Citation Format

Share Document