Smart home heating system malfunction and bad behavior diagnosis by Multi-Scale PCA under indoor temperature feedback control

Author(s):  
Andrea Giantomassi ◽  
Francesco Ferracuti ◽  
Sabrina Iarlori ◽  
Gloria Puglia ◽  
Alessandro Fonti ◽  
...  
2021 ◽  
Author(s):  
Sergey Polyakov

The article deals with the issues of modeling and management of residential building heating systems. A heating system stand has been created for testing the proposed automation systems. The description of the hydraulic, electrical and software parts of the stand is given. To control the work of the stand, a controller implemented on the Arduino platform is proposed. The results of experi-mental studies are presented.


2021 ◽  
Author(s):  
Sergey Polyakov

The article deals with the issues of modeling the control of room heating. The dynamics of the object-the heating system of a residential building-is obtained. The equation of the dynamics of the temperature sensor is derived. Dynamic errors are determined by the dynamic characteristics of the temperature sensor. The dynamic error is determined for a stepwise change in the input signal.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 997
Author(s):  
Davide Coraci ◽  
Silvio Brandi ◽  
Marco Savino Piscitelli ◽  
Alfonso Capozzoli

Recently, a growing interest has been observed in HVAC control systems based on Artificial Intelligence, to improve comfort conditions while avoiding unnecessary energy consumption. In this work, a model-free algorithm belonging to the Deep Reinforcement Learning (DRL) class, Soft Actor-Critic, was implemented to control the supply water temperature to radiant terminal units of a heating system serving an office building. The controller was trained online, and a preliminary sensitivity analysis on hyperparameters was performed to assess their influence on the agent performance. The DRL agent with the best performance was compared to a rule-based controller assumed as a baseline during a three-month heating season. The DRL controller outperformed the baseline after two weeks of deployment, with an overall performance improvement related to control of indoor temperature conditions. Moreover, the adaptability of the DRL agent was tested for various control scenarios, simulating changes of external weather conditions, indoor temperature setpoint, building envelope features and occupancy patterns. The agent dynamically deployed, despite a slight increase in energy consumption, led to an improvement of indoor temperature control, reducing the cumulative sum of temperature violations on average for all scenarios by 75% and 48% compared to the baseline and statically deployed agent respectively.


2022 ◽  
Vol 14 (4) ◽  
pp. 82-89
Author(s):  
Sergey Polyakov ◽  
V. Akimov ◽  
A. Polukazakov

The article discusses the issues of implementing the conversion of input signals of «smart» sensors for automation of the heating system, an algorithm for calculating the parameters of measuring circuits with a nonlinear element and an operational amplifier is developed. The issues of modeling cascade control of residential building heating systems are investigated. The results of the analysis and selection of parameters of the cascade control system are presented. An algorithm implementing the operation of a virtual object is given. The structures of management of residential building objects are proposed. The method of calculating the adjustment of the controller for cascade control is given. For the heating system stand, the procedure for setting the parameters of the process of PID control of the coolant temperature is considered. The results confirming the achievability of the proposed structural changes are obtained. The results of experimental studies are presented.


2003 ◽  
Vol 15 (03) ◽  
pp. 124-132 ◽  
Author(s):  
HAO-LI LIU ◽  
YUNG-YAW CHEN ◽  
JIA-YUSH YEN ◽  
WIN-LI LIN

The purpose of this paper is to investigate the relationship between the formation of the thermal lesion and the major parameters of the external ultrasound heating systems, and to propose a useful thermal lesion determination procedure, which is capable of specifying the range of a thermal lesion by temperature feedback in external ultrasound thermal therapy. This work is based on an ideal ultrasound power deposition formed by an external ultrasound heating system and the temperature distribution is calculated by the transient bioheat transfer equation. A simplified model was employed to determine the heating pattern for four most important parameters. Through the simplified power expression, the property of a new parameter, T300, which is defined as the maximal temperature corresponding to the thermal dose of 300 minutes, is also investigated. When the target volume is large enough such that the thermal conduction effect becomes negligible, the T300 value is almost independent of the system parameters and the heating strategies, and is dominated by the blood perfusion rate with a monotonic correlation. The method enables us to use feedback information in the ultrasound heating process and to pre-determine the heating range of the thermal lesion, which will be very useful in ultrasound treatment planning.


Sign in / Sign up

Export Citation Format

Share Document