Direct Measurement of Transformer Winding Hot Spot Temperature

1984 ◽  
Vol PER-4 (6) ◽  
pp. 26-27 ◽  
Author(s):  
W. J. McNutt ◽  
J. C. McIver ◽  
G. E. Leibinger ◽  
D. J. Fallon ◽  
K. A. Wickersheim
1984 ◽  
Vol PAS-103 (6) ◽  
pp. 1155-1162 ◽  
Author(s):  
W. J. McNutt ◽  
J. C. McIver ◽  
G. E. Leibinger ◽  
D. J. Fallon ◽  
K. A. Wickersheim

2020 ◽  
Vol 179 ◽  
pp. 01027
Author(s):  
Tao Li ◽  
Xiaoping Du ◽  
Xuewu Sun ◽  
Yuanyuan Song

The internal temperature of the transformer is a key parameter to measure the thermal state of the transformer. The service life of the transformer generally depends on the life of the insulating material, and high temperature is the main reason why cause insulation aging, this paper studies the temperature rise of transformer winding hot spot temperature for the key, using the neural network forecasting method, forecasts transformer winding hot spot temperature change rule, calculate the transformer internal temperature rise, provide the temperature of the scientific basis for the safe operation of the transformer.


Author(s):  
Zhengang Zhao ◽  
Zhangnan Jiang ◽  
Yang Li ◽  
Chuan Li ◽  
Dacheng Zhang

The temperature of the hot-spots on windings is a crucial factor that can limit the overload capacity of the transformer. Few studies consider the impact of the load on the hot-spot when studying the hot-spot temperature and its location. In this paper, a thermal circuit model based on the thermoelectric analogy method is built to simulate the transformer winding and transformer oil temperature distribution. The hot-spot temperature and its location under different loads are qualitatively analyzed, and the hot-spot location is analyzed and compared to the experimental results. The results show that the hot-spot position on the winding under the rated power appears at 85.88% of the winding height, and the hot-spot position of the winding moves down by 5% in turn at 1.3, 1.48, and 1.73 times the rated power respectively.


2021 ◽  
pp. 264-264
Author(s):  
Fating Yuan ◽  
Wentao Yang ◽  
Bo Tang ◽  
Yue Wang ◽  
Fa Jiang ◽  
...  

In this paper, the CFD (computational fluid dynamics) model is established for the low voltage winding region of an oil-immersed transformer according to the design parameters, and the detailed temperature distribution within the region is obtained by numerical simulation. On this basis, the RSM (response surface methodology) is adopted to optimize the structure parameters with the purpose of minimizing the hot spot temperature. After a sequence of designed experiments, the second-order polynomial response surface and the SVM (support vector machine) response surface are established respectively. The analysis of their errors shows that the SVM response surface can be better used to fit the approximation. Finally, the PSO (particle swarm optimization) algorithm is employed to get the optimal structure parameters of the winding based on the SVM response surface. The results show that the optimization method can significantly reduce the hot spot temperature of the winding, which provides a guiding direction for the optimal design of the winding structure of transformers.


Author(s):  
Shahram Khalil Aria ◽  
Sahar Samsami

In this paper, a developed mathematical model for temperature rise calculation is briefly described. In this model, at first, load loss of a transformer winding with forced directed oil is calculated and the winding temperature rise along the horizontal ducts and vertical ducts is computed. Then hot spot temperature and its exact location is determined. The model can also be used for optimal design of winding in size and cooling. Finally the results are given and compared with experiment values.


2014 ◽  
Vol 912-914 ◽  
pp. 1041-1045
Author(s):  
Guo Liang Yue ◽  
Yong Qiang Wang ◽  
Jie He ◽  
Hong Liang Liu

In this paper, we have Elaborated the mathematical model of temperature field and flow field of the oil-immersed transformer, and analysis its structure of thermal .We established a temperature finite element model of an oil-immersed transformer using the method of flow-solid-thermal coupling. Using the software of ANSYS, simulating on a 250MVA oil-immersed transformer, we obtain the steady-state temperature distribution and the winding hottest locations. Analyze the effect of oil-speed to the temperature field and location of the hot spot temperature of oil-immersed transformer. The results show that when oil flow rate is increases in the normal range, Transformer temperature rise corresponding slowly, and its location hottest temperature slightly pulled accordingly. The fiber measure different speeds Oil immersed transformer winding hot spot temperature to provide a basis for positioning.


Sign in / Sign up

Export Citation Format

Share Document