A good prospect for broadband millimeter-wave fiber-radio access system-an approach to single optical component at antenna base station

Author(s):  
K.-I. Kitayama ◽  
T. Kuri ◽  
R. Heinzelmann ◽  
A. Stohr ◽  
D. Jager ◽  
...  
2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Jianguo Li ◽  
Xiangming Li ◽  
Aihua Wang ◽  
Neng Ye

Enabling nonorthogonal multiple access (NOMA) in device-to-device (D2D) communications under the millimeter wave (mmWave) multiple-input multiple-output (MIMO) cellular network is of critical importance for 5G wireless systems to support low latency, high reliability, and high throughput radio access. In this paper, the closed-form expressions for the outage probability and the ergodic capacity in downlink MIMO-NOMA mmWave cellular network with D2D communications are considered, which indicates that NOMA outperforms TDMA. The influencing factors of performance, such as transmission power and antenna number, are also analyzed. It is found that higher transmission power and more antennas in the base station can decrease the outage probability and enhance the ergodic capacity of NOMA.


2000 ◽  
Vol 48 (12) ◽  
pp. 2588-2595 ◽  
Author(s):  
K. Kitayama ◽  
A. Stohr ◽  
T. Kuri ◽  
R. Heinzelmann ◽  
D. Jager ◽  
...  

2022 ◽  
Vol 9 ◽  
Author(s):  
Bo Xu ◽  
David Anguiano Sanjurjo ◽  
Davide Colombi ◽  
Christer Törnevik

International radio frequency (RF) electromagnetic field (EMF) exposure assessment standards and regulatory bodies have developed methods and specified requirements to assess the actual maximum RF EMF exposure from radio base stations enabling massive multiple-input multiple-output (MIMO) and beamforming. Such techniques are based on the applications of power reduction factors (PRFs), which lead to more realistic, albeit conservative, exposure assessments. In this study, the actual maximum EMF exposure and the corresponding PRFs are computed for a millimeter-wave radio base station array antenna. The computed incident power densities based on near-field and far-field approaches are derived using a Monte Carlo analysis. The results show that the actual maximum exposure is well below the theoretical maximum, and the PRFs similar to those applicable for massive MIMO radio base stations operating below 6 GHz are also applicable for millimeter-wave frequencies. Despite the very low power levels that currently characterize millimeter-wave radio base stations, using the far-field approach can also guarantee the conservativeness of the PRFs used to assess the actual maximum exposure close to the antenna.


2021 ◽  
Author(s):  
Dan Ye

Abstract Millimeter-wave technology is rising as a crucial component for 5G radio access and other emerging ancillary wireless networks including Gb/s device-to-device communication and mobile backhaul. This paper envisions that millimeter-wave cognitive radio in 5G network is a proposed smart energy consumption solution of Internet of Things (IoT) devices. Improving resource efficiency and enhancing data rates, resource sharing is a proposed advantage over millimeter wave cognitive radio in 5G IoT network. IoT Fog collaboration is proposed to apply artificial intelligence techniques to offer important energy-saving services allowing integrated systems to perceive, reason, learn, and act intelligently in intelligent gateway control. Smart energy meters are the current energy-saving utility in the flexible deployment of IoT architecture. NarrowBand IoT (NB-IoT) delivers Low Power Wide Area access (LPWA) to a new generation of connected things in the race to 5G IoT network, reducing energy computation and achieving promising network capacity. The renewable energy strategy is a proposed energy-efficiency solution in IoT network, maximizing the power supply while minimizing power consumption. A novel kind of visible light communications (VLC) is proposed to enable mmWave cognitive radio receiver in 5G IoT network. Simulation results show the proposed solution can reap the benefits of higher data rates, more IoT device connectivity, and lower energy consumption.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Parvin Kumar ◽  
Sanjay Kumar Sharma ◽  
Shelly Singla ◽  
Varun Gupta ◽  
Abhishek Sharma

Abstract In today’s scenario, wireless communication is turning into a decisive and leading backbone to access the worldwide network. Therefore, the usage of mobile phones and broadband is rising staggeringly. To satisfy their expulsive needs, it demands increment in data rates while providing higher bandwidth and utilizing optical fiber in wireless communication, and this becomes a worldwide analysis area. Radio over fiber (RoF) system is taken into account as best solution to fulfill these needs. In RoF system, the radio frequency signal operated at millimeter wave (30–300 GHz) is centralized and processed at control station (CS) and also, the CS upconverts this electrical signal to optical domain. By employing optical fiber link, this signal reaches to base station (BS). Then, the received optical signal converts back to electrical domain at the respective BS. Now BS radiates the electrical signal to corresponding mobile station (MS) in commission with the millimeter wave frequency bands. This RoF system is providing massive bandwidth, facilitating large mobility for RF frequency signals, small loss, fast and cost effective setup, wonderful security, and unlicensed spectrum etc. The RoF system introduces microcells structure for BS cells to boost the frequency reuse and needed capacity. It has benefits in terms of ability to fulfill increasing bandwidth demands to cut back the power consumption and the dimensions of the handset devices. This paper firstly explains the overview of existing wireless mobile communication and broadband systems and then, targets the review of RoF system which will become energy efficient system for next generation mobile communication and future broadband systems. This paper also includes the performance degradation and evaluation parameters. Finally, this paper presents the various research opportunities for its implementation zone.


2021 ◽  
Author(s):  
Tatsuki Okuyama ◽  
Satoshi Suyama ◽  
Nobuhide Nonaka ◽  
Takahiro Asai

Sign in / Sign up

Export Citation Format

Share Document