Integrated Electrical Test Vehicle Co-designed with Microfluidics for Evaluating the Performance of Embedded Cooling

Author(s):  
Yuxin Ye ◽  
Nan Zhang ◽  
Lihang Yu ◽  
Bo Cong ◽  
Ruiwen Liu ◽  
...  
Keyword(s):  
Author(s):  
J. V. Maskowitz ◽  
W. E. Rhoden ◽  
D. R. Kitchen ◽  
R. E. Omlor ◽  
P. F. Lloyd

The fabrication of the aluminum bridge test vehicle for use in the crystallographic studies of electromigration involves several photolithographic processes, some common, while others quite unique. It is most important to start with a clean wafer of known orientation. The wafers used are 7 mil thick boron doped silicon. The diameter of the wafer is 1.5 inches with a resistivity of 10-20 ohm-cm. The crystallographic orientation is (111).Initial attempts were made to both drill and laser holes in the silicon wafers then back fill with photoresist or mounting wax. A diamond tipped dentist burr was used to successfully drill holes in the wafer. This proved unacceptable in that the perimeter of the hole was cracked and chipped. Additionally, the minimum size hole realizable was > 300 μm. The drilled holes could not be arrayed on the wafer to any extent because the wafer would not stand up to the stress of multiple drilling.


Author(s):  
Mike Santana ◽  
Alfredo V. Herrera

Abstract This paper describes a methodology for correlating physical defect inspection/navigation systems with electrical bitmap data through the fabrication of artificial defects via reticle alterations or circuit modifications using an inline FIB. The methodology chosen consisted of altering decommissioned reticles to create defects resulting in both open and shorted circuits within areas of an AMD microprocessor cache. The reticles were subsequently scanned using a KLA SL300HR StarLight inspection system to confirm their location, while wafers processed on these reticles were scanned at several layers using standard inline metrology. Finally, the wafers were electrically tested, bitmapped, and physically deprocessed. All defect data was then analyzed and cross-correlated between each system, uncovering some important system deficiencies and learning opportunities. Data and images are included to support the significance and effectiveness of such a methodology.


Author(s):  
Oliver D. Patterson ◽  
Deborah A. Ryan ◽  
Xiaohu Tang ◽  
Shuen Cheng Lei

Abstract In-line E-beam inspection may be used for rapid generation of failure analysis (FA) results for low yielding test structures. This approach provides a number of advantages: 1) It is much earlier than traditional FA, 2) de-processing isn’t required, and 3) a high volume of sites can be processed with the additional support of an in-line FIB. Both physical defect detection and voltage contrast inspection modes are useful for this application. Voltage contrast mode is necessary for isolation of buried defects and is the preferred approach for opens, because it is faster. Physical defect detection mode is generally necessary to locate shorts. The considerations in applying these inspection modes for rapid failure analysis are discussed in the context of two examples: one that lends itself to physical defect inspection and the other, more appropriately addressed with voltage contrast inspection.


Author(s):  
Julie Segal ◽  
Arman Sagatelian ◽  
Bob Hodgkins ◽  
Tom Ho ◽  
Ben Chu ◽  
...  

Abstract Physical failure analysis (FA) of integrated circuit devices that fail electrical test is an important part of the yield improvement process. This article describes how the analysis of existing data from arrayed devices can be used to replace physical FA of some electrical test failures, and increase the value of physical FA results. The discussion is limited to pre-repair results. The key is to use classified bitmaps and determine which signature classification correlates to which type of in-line defect. Using this technique, physical failure mechanisms can be determined for large numbers of failures on a scale that would be unfeasible with de-processing and physical FA. If the bitmaps are classified, two-way correlation can be performed: in-line defect to bitmap failure, as well as bitmap signature to in-line defect. Results also demonstrate the value of analyzing memory devices failures, even those that can be repaired, to gain understanding of defect mechanisms.


Author(s):  
Pradip Sairam Pichumani ◽  
Fauzia Khatkhatay

Abstract Silicon photonics is a disruptive technology that aims for monolithic integration of photonic devices onto the complementary metal-oxide-semiconductor (CMOS) technology platform to enable low-cost high-volume manufacturing. Since the technology is still in the research and development phase, failure analysis plays an important role in determining the root cause of failures seen in test vehicle silicon photonics modules. The fragile nature of the test vehicle modules warrants the development of new sample preparation methods to facilitate subsequent non-destructive and destructive analysis methods. This work provides an example of a single step sample preparation technique that will reduce the turnaround time while simultaneously increasing the scope of analysis techniques.


Sign in / Sign up

Export Citation Format

Share Document