Response of silicon photomultipliers directly exposed to X-ray fluxes

Author(s):  
Giovanni Ambrosi ◽  
Mirco Caprai ◽  
Emanuele Fiandrini ◽  
Maria Ionica ◽  
Leonello Servoli ◽  
...  
2013 ◽  
Vol 21 (3) ◽  
pp. 22-25
Author(s):  
Nicholas C. Barbi ◽  
Richard B. Mott

Traditional electron detectors for scanning electron microscopes (SEMs) are the Everhart-Thornley detector located on one side of the specimen and the overhead backscattered electron detector (BSED), usually mounted under the final lens. In 2011 PulseTor introduced an efficient BSED based on scintillator/silicon photomultipler technology that is small enough to be mounted on the tip of an X-ray detector. The scintillator converts the electron signal to light, which is in turn converted to an electrical current in the silicon photomultiplier (SiPM). Silicon photomultipliers were initially developed in Russia in the 1990s. The review article by Dolgoshein et al. cites much of the historical development. Following the recent work of Piemonte and others, the SiPM consists of an array of many identical and independent detecting elements (microcells) connected in parallel on a common Si substrate. Each microcell is an avalanche photodiode only tens of micrometers in size.


2019 ◽  
Vol 14 (05) ◽  
pp. P05016-P05016 ◽  
Author(s):  
E. Fiandrini ◽  
V. Vagelli ◽  
L. Servoli ◽  
G. Ambrosi ◽  
L. Tosti

2012 ◽  
Vol 37 ◽  
pp. 1523-1530 ◽  
Author(s):  
Hamid Sabet ◽  
Harish B. Bhandari ◽  
Haris Kudrolli ◽  
Vivek V. Nagarkar

10.14311/1716 ◽  
2013 ◽  
Vol 53 (1) ◽  
Author(s):  
Alexei Ulyanov ◽  
Lorraine Hanlon ◽  
Sheila McBreen ◽  
Suzanne Foley

GRIPS is a proposed gamma-ray (200 keV to 80 MeV) astronomy mission, which incorporates a pair-creation and Compton scattering telescope, along with X-ray and infrared telescopes. It will carry out a sensitive all-sky scanning survey, investigating phenomena such as gamma-ray bursts, blazars and core collapse supernovae. The main telescope is composed of a Si strip detector surroundedby a calorimeter with a fast scintillator material. We present the initial results of a study which considers the potential use of silicon photomultipliers in conjunction with the scintillator in the GRIPS calorimeter module.


Crystals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 234 ◽  
Author(s):  
Christos Michail ◽  
Nektarios Kalyvas ◽  
Athanasios Bakas ◽  
Konstantinos Ninos ◽  
Ioannis Sianoudis ◽  
...  

The absolute luminescence efficiency (AE) of a calcium fluoride (CaF2:Eu) single crystal doped with europium was studied using X-ray energies met in general radiography. A CaF2:Eu single crystal with dimensions of 10 × 10 × 10 mm3 was irradiated by X-rays. The emission light photon intensity of the CaF2:Eu sample was evaluated by measuring AE within the X-ray range from 50 to 130 kV. The results of this work were compared with data obtained under similar conditions for the commercially employed medical imaging modalities, Bi4Ge3O12 and Lu2SiO5:Ce single crystals. The compatibility of the light emitted by the CaF2:Eu crystal, with the sensitivity of optical sensors, was also examined. The AE of the 10 × 10 × 10 mm3 CaF2:Eu crystal peaked in the range from 70 to 90 kV (22.22 efficiency units; E.U). The light emitted from CaF2:Eu is compatible with photocathodes, charge coupled devices (CCD), and silicon photomultipliers, which are used as radiation sensors in medical imaging systems. Considering the AE results in the examined energies, as well as the spectral compatibility with various photodetectors, a CaF2:Eu single crystal could be considered for radiographic applications, including the detection of charged particles and soft gamma rays.


1994 ◽  
Vol 144 ◽  
pp. 275-277
Author(s):  
M. Karlický ◽  
J. C. Hénoux

AbstractUsing a new ID hybrid model of the electron bombardment in flare loops, we study not only the evolution of densities, plasma velocities and temperatures in the loop, but also the temporal and spatial evolution of hard X-ray emission. In the present paper a continuous bombardment by electrons isotropically accelerated at the top of flare loop with a power-law injection distribution function is considered. The computations include the effects of the return-current that reduces significantly the depth of the chromospheric layer which is evaporated. The present modelling is made with superthermal electron parameters corresponding to the classical resistivity regime for an input energy flux of superthermal electrons of 109erg cm−2s−1. It was found that due to the electron bombardment the two chromospheric evaporation waves are generated at both feet of the loop and they propagate up to the top, where they collide and cause temporary density and hard X-ray enhancements.


1994 ◽  
Vol 144 ◽  
pp. 1-9
Author(s):  
A. H. Gabriel

The development of the physics of the solar atmosphere during the last 50 years has been greatly influenced by the increasing capability of observations made from space. Access to images and spectra of the hotter plasma in the UV, XUV and X-ray regions provided a major advance over the few coronal forbidden lines seen in the visible and enabled the cooler chromospheric and photospheric plasma to be seen in its proper perspective, as part of a total system. In this way space observations have stimulated new and important advances, not only in space but also in ground-based observations and theoretical modelling, so that today we find a well-balanced harmony between the three techniques.


1994 ◽  
Vol 144 ◽  
pp. 82
Author(s):  
E. Hildner

AbstractOver the last twenty years, orbiting coronagraphs have vastly increased the amount of observational material for the whitelight corona. Spanning almost two solar cycles, and augmented by ground-based K-coronameter, emission-line, and eclipse observations, these data allow us to assess,inter alia: the typical and atypical behavior of the corona; how the corona evolves on time scales from minutes to a decade; and (in some respects) the relation between photospheric, coronal, and interplanetary features. This talk will review recent results on these three topics. A remark or two will attempt to relate the whitelight corona between 1.5 and 6 R⊙to the corona seen at lower altitudes in soft X-rays (e.g., with Yohkoh). The whitelight emission depends only on integrated electron density independent of temperature, whereas the soft X-ray emission depends upon the integral of electron density squared times a temperature function. The properties of coronal mass ejections (CMEs) will be reviewed briefly and their relationships to other solar and interplanetary phenomena will be noted.


1988 ◽  
Vol 102 ◽  
pp. 47-50
Author(s):  
K. Masai ◽  
S. Hayakawa ◽  
F. Nagase

AbstractEmission mechanisms of the iron Kα-lines in X-ray binaries are discussed in relation with the characteristic temperature Txof continuum radiation thereof. The 6.7 keV line is ascribed to radiative recombination followed by cascades in a corona of ∼ 100 eV formed above the accretion disk. This mechanism is attained for Tx≲ 10 keV as observed for low mass X-ray binaries. The 6.4 keV line observed for binary X-ray pulsars with Tx> 10 keV is likely due to fluorescence outside the He II ionization front.


Sign in / Sign up

Export Citation Format

Share Document