HARTs: high availability cluster architecture with redundant TCP stacks

Author(s):  
Zhiyuan Shao ◽  
Hai Jin ◽  
Bin Chen ◽  
Jie Xu ◽  
Jianhui Yue
2012 ◽  
Vol 460 ◽  
pp. 313-316 ◽  
Author(s):  
Yong Qiang Zhang ◽  
Wen Ming Li

This paper aims at improve the MySQL relational database in the high concurrent read and write to the database, the high efficiency of mass data storage and access, database scalability and high availability aspects of the performance, presents a the High-performance Cluster Architecture Based on the MySQL and NoSQL. Use the MySQL on the advantages of relational data and the NoSQL on the advantages of storage areas for enterprise to save the development costs and maintenance costs. The combination of the MySQL and NoSQL has brought new ideas for the database development of web2.0.


2014 ◽  
Vol 912-914 ◽  
pp. 1236-1241
Author(s):  
Jie Shan

With the continuous implementation of internet of things and the rise of cloud computing, enterprise data center faces a huge test.In response to the new situation more stringent quality assurance service,data center server cluster needs a new architecture to support the new service high availability requirements.In this paper, the problems existing in the traditional data center server cluster architecture are analyzed,and put forward the application IRF2 technological upgrading data center server cluster network architecture,network availability method.


2009 ◽  
Vol E92-B (1) ◽  
pp. 26-33
Author(s):  
Yi-Hsuan FENG ◽  
Nen-Fu HUANG ◽  
Yen-Min WU
Keyword(s):  

Author(s):  
Linda Apriliana ◽  
Ucuk Darusala Darusalam ◽  
Novi Dian Nathasia

Layanan dan data teknologi Cloud Computing tersimpan pada server, hal ini menjadikan faktor pentingnya server sebagai pendukung ketersediaan layanan. Semakin banyak pengguna yang mengakses layanan tersebut akan mengakibatkan beban kinerja mesin server menjadi lebih berat dan kurang optimal, karena layanan harus bekerja menyediakan data terus-menerus yang dapat diakses kapanpun oleh penggunanya melalui jaringan terkoneksi. Perangkat keras server memiliki masa performa kinerja. Hal serupa dengan perangkat lunak yang dapat mengalami crash. Dengan fungsi server yang memberikan layanan kepada client, server dituntut untuk memiliki tingkat availability yang tinggi. Hal tersebut memungkinkan mesin server mengalami down. Server juga harus dimatikan untuk keperluan pemeliharaan. Penelitian bertujuan ini membangun Clustering Server yang dapat bekerja bersama yang seolah merupakan sistem tunggal diatas lingkungan virtual. Hal ini merupakan solusi untuk mengatasi permasalahan tersebut. Pada penelitian ini penulis menggunakan server virtualisasi proxmox, FreeNAS sebagai server NAS dan DRBD untuk pendukung ketersediaan layanan tinggi dalam lingkup HA, sinkronisasi data dalam High Availability (HA) yang dapat melakukan mirroring sistem kemesin lain. Dengan diterapkannya metode HA dan sinkronasi DRBD serta penggunaan NFS (Network File System) pada sistem cluster didapatkan hasil rata-rata waktu migrasi sebesar 9.7(s) pada node1 menuju node2, 3.7(s) node2 menuju node3, dan 3(s) pada node3 menuju node1. Didaptkan juga waktu downtime yang lebih sedikit yaitu sebesar 0.58 ms pada node1, 0.02 ms pada node2, dan 0.02 ms pada node3.


2021 ◽  
Vol 18 (4) ◽  
pp. 1-22
Author(s):  
Jerzy Proficz

Two novel algorithms for the all-gather operation resilient to imbalanced process arrival patterns (PATs) are presented. The first one, Background Disseminated Ring (BDR), is based on the regular parallel ring algorithm often supplied in MPI implementations and exploits an auxiliary background thread for early data exchange from faster processes to accelerate the performed all-gather operation. The other algorithm, Background Sorted Linear synchronized tree with Broadcast (BSLB), is built upon the already existing PAP-aware gather algorithm, that is, Background Sorted Linear Synchronized tree (BSLS), followed by a regular broadcast distributing gathered data to all participating processes. The background of the imbalanced PAP subject is described, along with the PAP monitoring and evaluation topics. An experimental evaluation of the algorithms based on a proposed mini-benchmark is presented. The mini-benchmark was performed over 2,000 times in a typical HPC cluster architecture with homogeneous compute nodes. The obtained results are analyzed according to different PATs, data sizes, and process numbers, showing that the proposed optimization works well for various configurations, is scalable, and can significantly reduce the all-gather elapsed times, in our case, up to factor 1.9 or 47% in comparison with the best state-of-the-art solution.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrea Parimuchová ◽  
Lenka Petráková Dušátková ◽  
Ľubomír Kováč ◽  
Táňa Macháčková ◽  
Ondřej Slabý ◽  
...  

AbstractTrophic interactions of cave arthropods have been understudied. We used molecular methods (NGS) to decipher the food web in the subterranean ecosystem of the Ardovská Cave (Western Carpathians, Slovakia). We collected five arthropod predators of the species Parasitus loricatus (gamasid mites), Eukoenenia spelaea (palpigrades), Quedius mesomelinus (beetles), and Porrhomma profundum and Centromerus cavernarum (both spiders) and prey belonging to several orders. Various arthropod orders were exploited as prey, and trophic interactions differed among the predators. Linear models were used to compare absolute and relative prey body sizes among the predators. Quedius exploited relatively small prey, while Eukoenenia and Parasitus fed on relatively large prey. Exploitation of eggs or cadavers is discussed. In contrast to previous studies, Eukoenenia was found to be carnivorous. A high proportion of intraguild predation was found in all predators. Intraspecific consumption (most likely cannibalism) was detected only in mites and beetles. Using Pianka’s index, the highest trophic niche overlaps were found between Porrhomma and Parasitus and between Centromerus and Eukoenenia, while the lowest niche overlap was found between Parasitus and Quedius. Contrary to what we expected, the high availability of Diptera and Isopoda as a potential prey in the studied system was not corroborated. Our work demonstrates that intraguild diet plays an important role in predators occupying subterranean ecosystems.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 527
Author(s):  
Andrzej Wysokinski ◽  
Izabela Lozak ◽  
Beata Kuziemska

Atmospheric nitrogen biologically reduced in legumes root nodule and accumulated in their postharvest residues may be of great importance as a source of this macronutrient for succeeding crops. The aim of the study was to determine nitrogen uptake by winter triticale from pea postharvest residues, including N fixed from atmosphere, using in the study fertilizer enriched with the 15N isotope. Triticale was grown without nitrogen fertilization at sites where the forecrops had been two pea cultivars (multi-purpose and field pea) and, for comparison, spring barley. The triticale crop succeeding pea took up more nitrogen from the soil (59.1%) and less from the residues of the forecrop (41.1%). The corresponding values where the forecrop was barley were 92.1% and 7.9%. In the triticale, the percentage of nitrogen derived from the atmosphere, introduced into the soil with pea crop residues amounted to 23.8%. The amounts of nitrogen derived from all sources in the entire biomass of triticale plants grown after harvesting of pea were similar for both pea cultivars. The cereal took up more nitrogen from all sources, when the soil on which the experiment was conducted had higher content of carbon and nitrogen and a greater amount of N was introduced with the pea residues. Nitrogen from pea residues had high availability for winter triticale as a succeeding crop cultivated on sandy soils.


2021 ◽  
Vol 17 (2) ◽  
pp. 1-27
Author(s):  
Morteza Hosseini ◽  
Tinoosh Mohsenin

This article presents a low-power, programmable, domain-specific manycore accelerator, Binarized neural Network Manycore Accelerator (BiNMAC), which adopts and efficiently executes binary precision weight/activation neural network models. Such networks have compact models in which weights are constrained to only 1 bit and can be packed several in one memory entry that minimizes memory footprint to its finest. Packing weights also facilitates executing single instruction, multiple data with simple circuitry that allows maximizing performance and efficiency. The proposed BiNMAC has light-weight cores that support domain-specific instructions, and a router-based memory access architecture that helps with efficient implementation of layers in binary precision weight/activation neural networks of proper size. With only 3.73% and 1.98% area and average power overhead, respectively, novel instructions such as Combined Population-Count-XNOR , Patch-Select , and Bit-based Accumulation are added to the instruction set architecture of the BiNMAC, each of which replaces execution cycles of frequently used functions with 1 clock cycle that otherwise would have taken 54, 4, and 3 clock cycles, respectively. Additionally, customized logic is added to every core to transpose 16×16-bit blocks of memory on a bit-level basis, that expedites reshaping intermediate data to be well-aligned for bitwise operations. A 64-cluster architecture of the BiNMAC is fully placed and routed in 65-nm TSMC CMOS technology, where a single cluster occupies an area of 0.53 mm 2 with an average power of 232 mW at 1-GHz clock frequency and 1.1 V. The 64-cluster architecture takes 36.5 mm 2 area and, if fully exploited, consumes a total power of 16.4 W and can perform 1,360 Giga Operations Per Second (GOPS) while providing full programmability. To demonstrate its scalability, four binarized case studies including ResNet-20 and LeNet-5 for high-performance image classification, as well as a ConvNet and a multilayer perceptron for low-power physiological applications were implemented on BiNMAC. The implementation results indicate that the population-count instruction alone can expedite the performance by approximately 5×. When other new instructions are added to a RISC machine with existing population-count instruction, the performance is increased by 58% on average. To compare the performance of the BiNMAC with other commercial-off-the-shelf platforms, the case studies with their double-precision floating-point models are also implemented on the NVIDIA Jetson TX2 SoC (CPU+GPU). The results indicate that, within a margin of ∼2.1%--9.5% accuracy loss, BiNMAC on average outperforms the TX2 GPU by approximately 1.9× (or 7.5× with fabrication technology scaled) in energy consumption for image classification applications. On low power settings and within a margin of ∼3.7%--5.5% accuracy loss compared to ARM Cortex-A57 CPU implementation, BiNMAC is roughly ∼9.7×--17.2× (or 38.8×--68.8× with fabrication technology scaled) more energy efficient for physiological applications while meeting the application deadline.


Sign in / Sign up

Export Citation Format

Share Document