Modeling and Analysis of MMC in AC Current Control Timescale Considering PLL Dynamics

Author(s):  
Jianhang Zhu ◽  
Jiabing Hu ◽  
Shicong Ma
Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3230
Author(s):  
Milovan Majstorovic ◽  
Marco Rivera ◽  
Leposava Ristic ◽  
Patrick Wheeler

The operation of single-phase Modular Multilevel Converter (MMC) is analyzed in the paper. A mathematical model of the converter is developed and described, based on which the structure and selection of parameters for Classical Control and Optimal Switching State Model Predictive Control (OSS-MPC) are defined. Additionally, the procedure for the determination of circuit parameters, such as submodule capacitance and arm inductance, is described and carried out. The listed control methods are designed and evaluated in Virtual Hardware-in-the-Loop together with single-phase MMC power circuit, regarding three control objectives: AC current control, voltage balancing control and circulating current control. Control methods are evaluated for both steady-state and transient performance and compared based on nine criteria: AC current reference tracking, THD of AC current and voltage, submodule capacitor voltage balancing, total submodule voltage control, circulating current magnitude and THD, number of control parameters and computational complexity. This is the first time that a fair comparison between Classical Control and MPC is considered in literature, resulting in superior performance of both control methods regarding four different criteria and the same performance regarding AC current reference tracking.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2285 ◽  
Author(s):  
Yantao Liao ◽  
Jun You ◽  
Jun Yang ◽  
Zuo Wang ◽  
Long Jin

Although the traditional model predictive control (MPC) can theoretically provide AC current and circulating current control for modular multilevel converters (MMCs) in battery energy storage grid-connected systems, it suffers from stability problems due to the power quality of the power grid and model parameter mismatches. A two discrete-time disturbance observers (DOBs)-based MPC strategy is investigated in this paper to solve this problem. The first DOB is used to improve the AC current quality and the second enhances the stability of the circulating current control. The distortion and fluctuation of grid voltage and inductance parameter variation are considered as lump disturbances in the discrete modeling of a MMC. Based on the proposed method, the output prediction is compensated by disturbance estimation to correct the AC current and circulating current errors, which eventually achieve the expected tracking performance. Moreover, the DOBs have a quite low computational cost with minimum order and optimal performance properties. Since the designed DOBs work in parallel with the MPC, the control effect is improved greatly under harmonics, 3-phase unbalance, voltage sag, inductance parameter mismatches and power reversal conditions. Simulation results confirm the validity of the proposed scheme.


2010 ◽  
Vol 1 ◽  
pp. 41-46
Author(s):  
B. Bourahla ◽  
B. Mazari ◽  
S. Moureau ◽  
G. Champenois
Keyword(s):  

Batteries ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 47
Author(s):  
S. M. Rakiul Islam ◽  
Sung-Yeul Park

Although a battery is a DC device, AC current is often necessary for testing, preheating, impedance spectroscopy, and advanced charging. This paper presents a versatile control technique to inject AC current to a battery. Synchronous buck and H-bridge topologies are operated in bidirectional mode and controlled by uni-polar and bi-polar pulse width modulation techniques for the AC current injection. The input and output passive circuits are specially designed considering AC current and the properties of the battery. A controller is proposed considering a small internal impedance, small AC ripple voltage, and variable DC offset voltage of a battery. The controller is capable of maintaining stable operation of AC current injection in two power quadrant within a small DC voltage boundary of a battery. The controller is comprised of a feedback compensator, a feedforward term, and an estimator. The feedback gain is designed considering the internal impedance. The feedforward gain is designed based on estimated open circuit battery voltage and input voltage. The open circuit voltage estimator is designed based on filters and battery model. For validation, AC current is injected to a Valence U-12XP battery. The battery is rated for 40 Ah nominal capacity and 13.8 V nominal voltage The controller successfully injected AC current to a battery with +10 A, 0 A and −10 A DC currents. The magnitude and frequency of the AC current was up to 5 A and 2 kHz respectively.


Sign in / Sign up

Export Citation Format

Share Document