A Novel Output-capacitorless Low-Dropout Regulator for Power Management

Author(s):  
Bin Wang ◽  
Gang Zhang ◽  
Miao Yang ◽  
Mei Song Tong
Author(s):  
Apratim Chatterjee ◽  
Manikandan P

A low dropout regulator is proposed in this paper. The regulator is designed with classic five pack model to decrease the number of devices and make the design compact and also reduce the power consumption. The system is designed and simulated in cadence virtuoso environment under 180nm technology node. Three models of LDO is proposed in this paper, with all having same error amplifier but with small variations. The advantages and disadvantages of each model will be discussed in the paper. The LDOs have linear characteristic over a good input range. It has good transient response to load variation. 


2014 ◽  
Vol 49 (11) ◽  
pp. 2684-2693 ◽  
Author(s):  
Samantak Gangopadhyay ◽  
Dinesh Somasekhar ◽  
James W. Tschanz ◽  
Arijit Raychowdhury

Author(s):  
Stefan Schmickl ◽  
Thomas Faseth ◽  
Harald Pretl

AbstractIoT devices become more and more popular which implies a growing interest in easily maintainable and battery-independent power sources, as wires and batteries are unpractical in application scenarios where billions of devices get deployed. To keep the costs low and to achieve the smallest possible form factor, SoC implementations with integrated energy harvesting and power management units are a welcome innovation.On-chip energy harvesting solutions are typically only capable of supplying power in the order of microwatts. A significant design challenge exists for the functional blocks of the IoT-SoC as well as for the power management unit itself as the harvested voltage has to be converted to a higher and more usable voltage. Simultaneously, the power management blocks have to be as efficient as possible with the lowest possible quiescent currents.In this paper, we provide a look at on-chip microwatt power management. Starting with the energy-harvesting from RF power or light, we then show state-of-the-art implementations of ultra-low power voltage references and ultra-low power low-dropout regulator (LDO) designs.


2014 ◽  
Vol 9 (4) ◽  
pp. 792 ◽  
Author(s):  
Anna Pinnarelli ◽  
Giuseppe Barone ◽  
Giovanni Brusco ◽  
Alessandro Burgio ◽  
Daniele Menniti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document