High-performance broadband circular polarizer using self-similar patterns

Author(s):  
Xiaoxiao Wu ◽  
Weijia Wen
Author(s):  
Yutaka Hasegawa ◽  
Hiroyuki Maezawa ◽  
Hideo Ogawa

Abstract A new waveguide stepped septum-type circular polarizer (SST-CP) was developed to operate in the 500-GHz band for radio astronomical and planetary atmospheric observations. In a previous study, we developed a practical SST-CP for the 230-GHz band. However, several issues prevent this device being easily scaled down to the 500-GHz band, such as manufacturing dimensional errors and waveguide flange position errors. In this study, we developed a new waveguide flange with a high-accuracy position determination mechanism and a very small size of 10 × 10 mm. We also developed a new fabrication technique to obtain very good flatness for the device’s blank materials by high-accuracy polishing using a resin fixture. Using these new methods, the manufactured 500-GHz band SST-CP achieved a cross-polarization talk level of better than – 30 dB at 465–505 GHz, a device surface flatness of within 3 μm, and also the horizontal positioning error of ± 3 μm. These results indicate that the developed 500-GHz band SST-CP has high performance in the high-frequency band, and thus the new manufacturing methods are effective in the 500-GHz band.


1995 ◽  
Vol 4 (1) ◽  
pp. 1-21 ◽  
Author(s):  
Matthew O'keefe ◽  
Terence Parr ◽  
B. Kevin Edgar ◽  
Steve Anderson ◽  
Paul Woodward ◽  
...  

Massively parallel processors (MPPs) hold the promise of extremely high performance that, if realized, could be used to study problems of unprecedented size and complexity. One of the primary stumbling blocks to this promise has been the lack of tools to translate application codes to MPP form. In this article we show how applications codes written in a subset of Fortran 77, called Fortran-P, can be translated to achieve good performance on several massively parallel machines. This subset can express codes that are self-similar, where the algorithm applied to the global data domain is also applied to each subdomain. We have found many codes that match the Fortran-P programming style and have converted them using our tools. We believe a self-similar coding style will accomplish what a vectorizable style has accomplished for vector machines by allowing the construction of robust, user-friendly, automatic translation systems that increase programmer productivity and generate fast, efficient code for MPPs.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
YongAn Huang ◽  
Wentao Dong ◽  
Chen Zhu ◽  
Lin Xiao

Stable acquisition of electromyography (EMG)/electrocardiograph (ECG) signal is critical and challenging in dynamic human-machine interaction. Here, self-similar inspired configuration is presented to design surface electrodes with high mechanical adaptability (stretchability and conformability with skin) and electrical sensitivity/stability which are usually a pair of paradoxes. Mechanical and electrical coupling optimization strategies are proposed to optimize the surface electrodes with the 2nd-order self-similar serpentine configuration. It is devoted the relationship between the geometric shape parameters (height-space ratio η, scale factor β, and line width w), the areal coverage α, and mechanical adaptability, based on which an open network-shaped electrode is designed to stably collect high signal-to-noise ratio signals. The theoretical and experimental results show that the electrodes can be stretched > 30% and conform with skin wrinkle. The interfacial strength of electrode and skin is measured by homemade peeling test experiment platform. The surface electrodes with different line widths are used to record ECG signals for validating the electrical stability. Conformability reduces background noises and motion artifacts which provides stable recording of ECG/EMG signals. Further, the thin, stretchable electrodes are mounted on the human epidermis for continuous, stable biopotential signal records which suggests the way to high-performance electrodes in human-machine interaction.


2019 ◽  
Vol 44 (5) ◽  
pp. 1234 ◽  
Author(s):  
Chunyang Ma ◽  
Ankita Khanolkar ◽  
Andy Chong

Author(s):  
A. V. Crewe ◽  
M. Isaacson ◽  
D. Johnson

A double focusing magnetic spectrometer has been constructed for use with a field emission electron gun scanning microscope in order to study the electron energy loss mechanism in thin specimens. It is of the uniform field sector type with curved pole pieces. The shape of the pole pieces is determined by requiring that all particles be focused to a point at the image slit (point 1). The resultant shape gives perfect focusing in the median plane (Fig. 1) and first order focusing in the vertical plane (Fig. 2).


Author(s):  
N. Yoshimura ◽  
K. Shirota ◽  
T. Etoh

One of the most important requirements for a high-performance EM, especially an analytical EM using a fine beam probe, is to prevent specimen contamination by providing a clean high vacuum in the vicinity of the specimen. However, in almost all commercial EMs, the pressure in the vicinity of the specimen under observation is usually more than ten times higher than the pressure measured at the punping line. The EM column inevitably requires the use of greased Viton O-rings for fine movement, and specimens and films need to be exchanged frequently and several attachments may also be exchanged. For these reasons, a high speed pumping system, as well as a clean vacuum system, is now required. A newly developed electron microscope, the JEM-100CX features clean high vacuum in the vicinity of the specimen, realized by the use of a CASCADE type diffusion pump system which has been essentially improved over its predeces- sorD employed on the JEM-100C.


Sign in / Sign up

Export Citation Format

Share Document