Performance of Neutron/Proton Source Based on Ion-Source-Assisted Radially Convergent Beam Fusion

Author(s):  
Kunihito Yamauchi ◽  
Atsushi Tashiro ◽  
Sonoe Ohura ◽  
Masato Watanabe ◽  
Akitoshi Okino ◽  
...  
2006 ◽  
Vol 126 (11) ◽  
pp. 1177-1182 ◽  
Author(s):  
Kunihito Yamauchi ◽  
Sonoe Ohura ◽  
Masato Watanabe ◽  
Akitoshi Okino ◽  
Toshiyuki Kohno ◽  
...  

Author(s):  
С.В. Барабин ◽  
Г.Н. Кропачев ◽  
А.Ю. Лукашин ◽  
Т.В. Кулевой ◽  
С.С. Выбин ◽  
...  

Advantages of using a gasdynamic electron cyclotron ion source in a proton accelerator based compact neutron source DARIA are discussed. It is experimentally demonstrated that the gasdynamic proton source is able to provide ion beams with 100 mA current, duration from 100 microseconds and longer at repetition rate up to 1 kHz. Emittance of the ion beams produced by the gasdynamic ion source was measured using a “pepper-pot” method for two extraction electrodes geometries: “spherical” and flat parallel. It is shown that the normalized 4 rms emittance value for both electrode configurations in the range of extraction voltage from 41 t 48 kV does not exceed 2 mm mrad.


Author(s):  
R. W. Carpenter ◽  
I.Y.T. Chan ◽  
J. M. Cowley

Wide-angle convergent beam shadow images(CBSI) exhibit several characteristic distortions resulting from spherical aberration. The most prominent is a circle of infinite magnification resulting from rays having equal values of a forming a cross-over on the optic axis at some distance before reaching the paraxial focal point. This distortion is called the tangential circle of infinite magnification; it can be used to align and stigmate a STEM and to determine Cs for the probe forming lens. A second distortion, the radial circle of infinite magnification, results from a cross-over on the lens caustic surface of rays with differing values of ∝a, also before the paraxial focal point of the lens.


Author(s):  
W. L. Bell

Disappearance voltages for second order reflections can be determined experimentally in a variety of ways. The more subjective methods, such as Kikuchi line disappearance and bend contour imaging, involve comparing a series of diffraction patterns or micrographs taken at intervals throughout the disappearance range and selecting that voltage which gives the strongest disappearance effect. The estimated accuracies of these methods are both to within 10 kV, or about 2-4%, of the true disappearance voltage, which is quite sufficient for using these voltages in further calculations. However, it is the necessity of determining this information by comparisons of exposed plates rather than while operating the microscope that detracts from the immediate usefulness of these methods if there is reason to perform experiments at an unknown disappearance voltage.The convergent beam technique for determining the disappearance voltage has been found to be a highly objective method when it is applicable, i.e. when reasonable crystal perfection exists and an area of uniform thickness can be found. The criterion for determining this voltage is that the central maximum disappear from the rocking curve for the second order spot.


Author(s):  
Dudley M. Sherman ◽  
Thos. E. Hutchinson

The in situ electron microscope technique has been shown to be a powerful method for investigating the nucleation and growth of thin films formed by vacuum vapor deposition. The nucleation and early stages of growth of metal deposits formed by ion beam sputter-deposition are now being studied by the in situ technique.A duoplasmatron ion source and lens assembly has been attached to one side of the universal chamber of an RCA EMU-4 microscope and a sputtering target inserted into the chamber from the opposite side. The material to be deposited, in disc form, is bonded to the end of an electrically isolated copper rod that has provisions for target water cooling. The ion beam is normal to the microscope electron beam and the target is placed adjacent to the electron beam above the specimen hot stage, as shown in Figure 1.


Author(s):  
K. Ishizuka

The technique of convergent-beam electron diffraction (CBED) has been established. However there is a distinct discrepancy concerning the CBED pattern symmetries associated with translation symmetries parallel to the incident beam direction: Buxton et al. assumed no detectable effects of translation components, while Goodman predicted no associated symmetries. In this report a procedure used by Gjønnes & Moodie1 to obtain dynamical extinction rules will be extended in order to derive the CBED pattern symmetries as well as the dynamical extinction rules.


Author(s):  
J W Steeds ◽  
R Vincent

We review the analytical powers which will become more widely available as medium voltage (200-300kV) TEMs with facilities for CBED on a nanometre scale come onto the market. Of course, high performance cold field emission STEMs have now been in operation for about twenty years, but it is only in relatively few laboratories that special modification has permitted the performance of CBED experiments. Most notable amongst these pioneering projects is the work in Arizona by Cowley and Spence and, more recently, that in Cambridge by Rodenburg and McMullan.There are a large number of potential advantages of a high intensity, small diameter, focussed probe. We discuss first the advantages for probes larger than the projected unit cell of the crystal under investigation. In this situation we are able to perform CBED on local regions of good crystallinity. Zone axis patterns often contain information which is very sensitive to thickness changes as small as 5nm. In conventional CBED, with a lOnm source, it is very likely that the information will be degraded by thickness averaging within the illuminated area.


Author(s):  
R. H. Morriss ◽  
J. D. C. Peng ◽  
C. D. Melvin

Although dynamical diffraction theory was modified for electrons by Bethe in 1928, relatively few calculations have been carried out because of computational difficulties. Even fewer attempts have been made to correlate experimental data with theoretical calculations. The experimental conditions are indeed stringent - not only is a knowledge of crystal perfection, morphology, and orientation necessary, but other factors such as specimen contamination are important and must be carefully controlled. The experimental method of fine-focus convergent-beam electron diffraction has been successfully applied by Goodman and Lehmpfuhl to single crystals of MgO containing light atoms and more recently by Lynch to single crystalline (111) gold films which contain heavy atoms. In both experiments intensity distributions were calculated using the multislice method of n-beam diffraction theory. In order to obtain reasonable accuracy Lynch found it necessary to include 139 beams in the calculations for gold with all but 43 corresponding to beams out of the [111] zone.


Sign in / Sign up

Export Citation Format

Share Document