Separation of ion and photon damage effects on novel dielectric materials during plasma exposure

Author(s):  
H. Ren ◽  
G.A. Antonelli ◽  
Y. Nishi ◽  
J.L. Shohet
Author(s):  
H. Ren ◽  
M.T. Nichols ◽  
G. Jiang ◽  
G.A. Antonelli ◽  
Y. Nishi ◽  
...  

2012 ◽  
Vol 187 ◽  
pp. 193-195 ◽  
Author(s):  
O. Joubert ◽  
Nicolas Possémé ◽  
Thierry Chevolleau ◽  
Thibaut David ◽  
M. Darnon

For the 45 nm interconnect technology node, porous dielectric materials (p-SiOCH) have been introduced, leading to complex integration issues due to their high sensitivity upon FC etching and ashing plasma exposure [1, 2]. Thanks to Metallic hard mask (MHM) integration high selectivities towards dielectric materials (>100:1) can be reached and minimizes exposure of p-SiOCH films to ashing plasmas. However MHM such as TiN generates other issues such as i) metal contamination in the patterned structures and ii) growth of metal based residues on the top of the hard mask [3, 4, 5]. The residues growth, which is air exposure time dependent, directly impacts the yield performance with the generation of via and line opens [.


2012 ◽  
Author(s):  
J. L. Shohet ◽  
H. Ren ◽  
M. T. Nichols ◽  
H. Sinha ◽  
W. Lu ◽  
...  

1993 ◽  
Vol 70 (06) ◽  
pp. 0998-1004 ◽  
Author(s):  
Páll T Önundarson ◽  
H Magnús Haraldsson ◽  
Lena Bergmann ◽  
Charles W Francis ◽  
Victor J Marder

SummaryThe relationship between lytic state variables and ex vivo clot lysability was investigated in blood drawn from patients during streptokinase administration for acute myocardial infarction. A lytic state was already evident after 5 min of treatment and after 20 min the plasminogen concentration had decreased to 24%, antiplasmin to 7% and fibrinogen 0.2 g/1. Lysis of radiolabeled retracted clots in the patient plasmas decreased from 37 ± 8% after 5 min to 21 ± 8% at 10 min and was significantly lower (8 ± 9%, p <0.005) in samples drawn at 20, 40 and 80 min. Clot lysability correlated positively with the plasminogen concentration (r = 0.78, p = 0.003), but not with plasmin activity. Suspension of radiolabeled clots in normal plasma pre-exposed to 250 U/ml two-chain urokinase for varying time to induce an in vitro lytic state was also associated with decreasing clot lysability in direct proportion with the duration of prior plasma exposure to urokinase. The decreased lysability correlated with the time-dependent reduction in plasminogen concentration (r = 0.88, p <0.0005). Thus, clot lysability decreases in conjunction with the development of the lytic state and the associated plasminogen depletion. The lytic state may therefore limit reperfusion during thrombolytic treatment.


2020 ◽  
pp. 51-58
Author(s):  
Aleksandr I. Kazmin ◽  
Pavel A. Fedjunin

One of the most important diagnostic problems multilayer dielectric materials and coatings is the development of methods for quantitative interpretation of the checkout results their electrophysical and geometric parameters. The results of a study of the potential informativeness of the multi-frequency radio wave method of surface electromagnetic waves during reconstruction of the electrophysical and geometric parameters of multilayer dielectric coatings are presented. The simulation model is presented that makes it possible to evaluate of the accuracy of reconstruction of the electrophysical and geometric parameters of multilayer dielectric coatings. The model takes into account the values of the electrophysical and geometric parameters of the coating, the noise level in the measurement data and the measurement bandwidth. The results of simulation and experimental investigations of reconstruction of the structure of relative permittivitties and thicknesses of single-layer and double-layer dielectric coatings with different thicknesses, with different values of the standard deviation (RMS) of the noise level in the measured attenuation coefficients of the surface slow electromagnetic wave are presented. Coatings based on the following materials were investigated: polymethyl methacrylate, F-4D PTFE, RO3010. The accuracy of reconstruction of the electrophysical parameters of the layers decreases with an increase in the number of evaluated parameters and an increase in the noise level. The accuracy of the estimates of the electrophysical parameters of the layers also decreases with a decrease in their relative permittivity and thickness. The results of experimental studies confirm the adequacy of the developed simulation model. The presented model allows for a specific measuring complex that implements the multi-frequency radio wave method of surface electromagnetic waves, to quantify the potential possibilities for the accuracy of reconstruction of the electrophysical and geometric parameters of multilayer dielectric materials and coatings. Experimental investigations and simulation results of a multilayer dielectric coating demonstrated the theoretical capabilities gained relative error permittivity and thickness of the individual layers with relative error not greater than 10 %, with a measurement bandwidth of 1 GHz and RMS of noise level 0,003–0,004.


1991 ◽  
Vol 223 ◽  
Author(s):  
Neeta Agrawal ◽  
R. D. Tarey ◽  
K. L. Chopra

ABSTRACTArgon plasma exposure has been used to induce surface chemical modification of aluminium thin films, causing a drastic change in etch rate in standard HNO3/CH3COOH/H3PO4 etchant. The inhibition period was found to increase with power and Ar plasma exposure time. Auger electron and x-ray photoelectron spectroscopies have indicated formation of an aluminium fluoride (AlF3) surface layer due to fluorine contamination originating from the residue left in the plasma chamber during CF4 processing. The high etch selectivity between unexposed and argon plasma exposed regions has been exploited as a new technique for resistless patterning of aluminium.


Sign in / Sign up

Export Citation Format

Share Document