Low-k Integration Using Metallic Hard Masks

2012 ◽  
Vol 187 ◽  
pp. 193-195 ◽  
Author(s):  
O. Joubert ◽  
Nicolas Possémé ◽  
Thierry Chevolleau ◽  
Thibaut David ◽  
M. Darnon

For the 45 nm interconnect technology node, porous dielectric materials (p-SiOCH) have been introduced, leading to complex integration issues due to their high sensitivity upon FC etching and ashing plasma exposure [1, 2]. Thanks to Metallic hard mask (MHM) integration high selectivities towards dielectric materials (>100:1) can be reached and minimizes exposure of p-SiOCH films to ashing plasmas. However MHM such as TiN generates other issues such as i) metal contamination in the patterned structures and ii) growth of metal based residues on the top of the hard mask [3, 4, 5]. The residues growth, which is air exposure time dependent, directly impacts the yield performance with the generation of via and line opens [.

2012 ◽  
Author(s):  
J. L. Shohet ◽  
H. Ren ◽  
M. T. Nichols ◽  
H. Sinha ◽  
W. Lu ◽  
...  

2010 ◽  
Vol 1249 ◽  
Author(s):  
Alshakim Nelson ◽  
Jitendra S Rathore ◽  
Blake Davis ◽  
Phillip Brock ◽  
Ratnam Sooriyakumaran ◽  
...  

AbstractThe future resolution requirements for the semiconductor industry demand advanced lithographic techniques, such as immersion and extreme ultraviolet (EUV) technologies, which will increase the cost of microelectronics manufacturing. Currently, low-k dielectric materials, which are used as insulating layers between the copper wiring, are indirectly patterned using a set of sacrificial layers and etch processes. The sacrificial layers include a photoresist polymer that must first be imaged prior to transferring the pattern to the underlying layers, including the dielectric layer. In order to reduce the number of processing steps required for semiconductor manufacturing, we have developed a novel photo-patternable low-k dielectric material that (1) eliminates the need for sacrificial layers and (2) reduces the number of wafer processing steps. Silsesquioxane copolymers that undergo acid-catalyzed crosslinking when exposed to 193nm wavelength were synthesized. In addition to the direct photo-patternability, the patterned structures are suitable as a dielectric material with a dielectric constant as low as 2.4, and an appreciable elastic modulus (E > 4.0 GPa). These photo-patternable low-k materials represent a ‘greener' approach to semiconductor manufacturing which has the ability to reduce cost, waste materials, and energy consumption.


2006 ◽  
Vol 914 ◽  
Author(s):  
George Andrew Antonelli ◽  
Tran M. Phung ◽  
Clay D. Mortensen ◽  
David Johnson ◽  
Michael D. Goodner ◽  
...  

AbstractThe electrical and mechanical properties of low-k dielectric materials have received a great deal of attention in recent years; however, measurements of thermal properties such as the coefficient of thermal expansion remain minimal. This absence of data is due in part to the limited number of experimental techniques capable of measuring this parameter. Even when data does exist, it has generally not been collected on samples of a thickness relevant to current and future integrated processes. We present a procedure for using x-ray reflectivity to measure the coefficient of thermal expansion of sub-micron dielectric thin films. In particular, we elucidate the thin film mechanics required to extract this parameter for a supported film as opposed to a free-standing film. Results of measurements for a series of plasma-enhanced chemical vapor deposited and spin-on low-k dielectric thin films will be provided and compared.


2016 ◽  
Vol 5 (10) ◽  
pp. P578-P583 ◽  
Author(s):  
Naoki Torazawa ◽  
Susumu Matsumoto ◽  
Takeshi Harada ◽  
Yasunori Morinaga ◽  
Daisuke Inagaki ◽  
...  

Author(s):  
H. Ren ◽  
M.T. Nichols ◽  
G. Jiang ◽  
G.A. Antonelli ◽  
Y. Nishi ◽  
...  

2021 ◽  
Author(s):  
Ahmed Mehaney ◽  
Hussein A. Elsayed ◽  
Ashour M. Ahmed

Abstract Detection of blood-carried volatile organic compounds (VOCs) existing in the exhaled breath of human is an attractive research point for noninvasive diagnosis of diseases. In this research, we introduce a novel application of photonic crystals (PCs) for the detection of isoprene traces in the exhaled breath as a biomarker for liver fibrosis. This idea is introduced for the first time according to the best of our knowledge. The proposed sensor structure is a one-dimensional (1D) PC constructed from a multilayer stack of two dielectric materials covered with an air cavity layer filled with the dry exhaled breath (DEB) and a thin metallic layer of Au is attached on the top surface. Hence, the proposed sensor is configured as, [prism/Au/air cavity/(GaN/SiO2)10]. The transfer matrix method and the Drude model are adopted to calculate the numerical simulations and reflection spectra of the design. The essential key for sensing isoprene levels is the resonant optical Tamm plasmon (TP) states within the photonic bandgap. The obtained numerical results are promising such as high sensitivity (S) of 0.321 nm/ppm or 278720 nm/RIU. This technique can be reducing the risk of infection during the taking of blood samples by syringe. Also, it can prevent the pain of patients. Finally, this work opens the door for the detection of many diseases by analyzing the breaths of patients based on photonic crystals.


2005 ◽  
Vol 103-104 ◽  
pp. 357-360
Author(s):  
B.G. Sharma ◽  
Chris Prindle

Interconnect RC delay is the limiting factor for device performance in submicron semiconductor technology. Copper and low-k dielectric materials can reduce this delay and have gained widespread acceptance in the semiconductor industry. The presence of copper interconnects provides unprecedented challenges for via cleaning technology and requires the development of novel process chemistries for improved device capability.


Sign in / Sign up

Export Citation Format

Share Document