scholarly journals Validating Coordination Schemes between Transmission and Distribution System Operators using a Laboratory-Based Approach

Author(s):  
Filip Prostl Andren ◽  
Thomas I. Strasser ◽  
Julien Le Baut ◽  
Marco Rossi ◽  
Giacomo Vigano ◽  
...  
Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 513
Author(s):  
Henryk Majchrzak ◽  
Michał Kozioł

The balancing of the power of the Polish Power System (KSE) is a key element in ensuring the safety of electric energy supplies to end users. This article presents an analysis of the power demand in power systems (PS), with emphasis on the typical power variability both in subsequent hours of the day and on particular days and in particular months each year. The methodology for calculating the costs of electric energy undelivered to the end users and the amount of these costs for KSE is presented. Different possibilities have been analyzed for balancing power systems’ peak load and assumptions have been formulated for calculating the amount of the related costs. On this basis, a comparative analysis has been made of the possibility to balance peak load using operators’ system services, trans-border connections, and various energy storage solutions. On the basis of the obtained results, optimal tools have been proposed for market-based influence from transmission and distribution system operators on energy market participants’ behaviors in order to ensure the power systems’ operating safety and continuous energy deliveries to end users.


1987 ◽  
Vol 20 (1) ◽  
pp. 18-25
Author(s):  
P Gilbert

The transmission and distribution system operated by British Gas plc is the largest integrated pipeline system in Europe. The whole system comprises a national transmission system which carries gas from five terminals to the twelve gas regions. Each region in turn carries the gas through a regional transmission system into a distribution grid and thence onto its customers. The national, regional and distribution system all present the instrument engineer with different technical challenges because of the way in which they have been built and are operated, however, it is simplest to characterise them by their process conditions. The operating pressure is highest in the national transmission system being up to 75 bar, in the regional transmission system the pressure is usually less than 37 bar, and in the distribution grid it is less than 7 bar. In general, the pipe diameters decrease from the national system downwards, and the measured flowrates are lowest in the distribution grids. This paper is concerned only with instrumentation on the national transmission system. The discussion will cover current technology which is typical of that being installed at present, and concentrates on the more commonly found instrumentation. The paper begins with a brief history of development of the national transmission system and a description of how it is operated. This is followed by a discussion on the application of computers to the control of unmanned installations. A section concerning the measurement of pressure and its application to the control of the system comes next. The main part of the paper contains an analysis of high accuracy flowmetering and the paper concludes with some comments on developments in instrumentation and their application to changing operation of the national transmission system.


Author(s):  
David K. Click ◽  
Houtan Moaveni ◽  
Kristopher O. Davis ◽  
Richard H. Meeker ◽  
Robert M. Reedy ◽  
...  

Author(s):  
Adel M Sharaf ◽  
Khaled Mohamed Abo-Al-Ez

In a deregulated electric service environment, an effective electric transmission and distribution networks are vital to the competitive environment of reliable electric service. Power quality (PQ) is an item of steadily increasing concern in power transmission and distribution. The traditional approach to overcoming capacity and quality limitations in power transmission and distribution in many cases is the addition of new transmission and/or generating capacity. This, however, may not be practicable or desirable in the real case, for many of reasons. From technical, economical and environmental points of view, there are two important - and most of the time combined - alternatives for building new transmission or distribution networks to enhance the transmission system capacity, and power quality: the Flexible alternating current transmission devices and controllers, and the distributed generation resources near the load centers. The connection of distributed generation to the distribution grid may influence the stability of the power system, i.e. angle, frequency and voltage stability. It might also have an impact on the protection selectivity, and the frequency and voltage control in the system. This paper presents a low cost FACTS based Dynamic Distribution System Compensator (DDSC) scheme for voltage stabilization and power transfer and quality enhancement of the distribution feeders connected to a dispersed wind generator, using MATLAB/ SimPower System simulation tool.


Author(s):  
D. J. Van Brink

The following paper recounts the loss of supply and subsequent restoration of the Bay of Plenty Electric Power Board' s sub transmission and distribution systems following the advent of the Edgecumbe earthquake of 2 March 1987. The paper details the effects on the Board's customers and staff, restoration procedures, and matters relating to the restoration of supply and repair of the distribution system. The emphasis is more on the operational and organisational aspects of the event, rather than being a report of structural damage and remedial repairs. Technical aspects of this sort are dealt with in greater detail by other organisations.


2021 ◽  
pp. 5-9
Author(s):  
Tetiana AVERIKHINA ◽  
Maryna BURIACHENKO ◽  
Valeriia VASYLIEVA

Introduction. The world market of electrical equipment is developing very fast. There are many companies in the market that sell electrical equipment, among them there are companies that occupy leading positions. Today, the world market of energy engineering is estimated at 87 billion dollars per year, based on the structural dynamics of growth, the annual volume can reach 110-115 billion dollars per year until 2025. The global market for energy equipment service in 2020 is 31.7 billion dollars, including: LTSA (long-term service) 47 %, modernization – 20 %, field service – 24 %, engineering – 9 %. The purpose of the paper is to analyze the world market of electrical equipment, determine sales, business growth. The list of leaders in electrical equipment on the world market is considered. Results. The main trends in the world today are the following areas: development of DC transmission system, cable lines for underwater laying and cable for connections of renewable energy sources to reduce energy transmission costs through the capabilities of existing transmission lines, through network voltages and innovative design solutions and installation methods. The amendment for these trends shows us the world leaders in the electrical market, such as Legrand, Schneider Electric, ABB, Siemens, DEKraft, SASSIN, EKF, etc., R&D costs are 3.5–5 % of profits (over 60 years). Thus, we can conclude that the global market for cable networks is developing rapidly. This market is expected to grow in the development of smart grid technologies, renewable energy generation and initiatives to modernize the transmission and distribution system. Conclusion. That the global cable ladder market is developing rapidly. This market is expected to grow in the development of smart grid technologies, renewable energy cultivation and government initiatives to modernize transmission and distribution systems.


2018 ◽  
Author(s):  
Nohora A. Hormaza Mejia ◽  
Jack Brouwer

Hydrogen has often been studied as a possible fuel of the future due to its capabilities to support zero emissions and sustainable energy conversion. Hydrogen can be used in a fuel cell to generate electricity at high efficiencies and with zero emissions. In addition, hydrogen can be renewably produced via electrolysis reactions that are powered from otherwise curtailed renewable energy. One possible means of storing and delivering renewable hydrogen is to inject it into the existing natural gas (NG) system and thus decarbonize gas end-uses. The NG system has potential to serve as a storage, transmission and distribution system for renewably produced hydrogen. Despite the potential of hydrogen to reduce the carbon intensity of the NG system, the unique characteristics of hydrogen (low molecular weight, high diffusivity, lower volumetric heating value, propensity to embrittle pipeline materials) has led to justified concerns over the safety of introducing hydrogen blends into the NG system. While many studies have attempted to quantitatively predict leakage rates of hydrogen using classical fluid mechanics theories, such as Hagen-Poiseuille flow, there have been limited studies which quantitatively assess gaseous fuel leakage to support the predictions made from theoretical analyses and computations. In this paper we present a summary of the literature related to gaseous fuel leakage and results from preliminary experiments which support the idea that entrance effects may significantly affect gaseous fuel leakage from practical leak scenarios such as NG fittings, resulting in similar leakage rates between hydrogen and NG.


Sign in / Sign up

Export Citation Format

Share Document