Target localization and velocity estimation methods for frequency-only MIMO Radars

Author(s):  
Yilmaz Kalkan ◽  
Buyurman Baykal
Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2436 ◽  
Author(s):  
Jiajia Jiang ◽  
Xianquan Wang ◽  
Fajie Duan ◽  
Chunyue Li ◽  
Xiao Fu ◽  
...  

The covertness of the active sonar is a very important issue and the sonar signal waveform design problem was studied to improve covertness of the system. Many marine mammals produce call pulses for communication and echolocation, and existing interception systems normally classify these biological signals as ocean noise and filter them out. Based on this, a bio-inspired covert active sonar strategy was proposed. The true, rather than man-made sperm whale, call pulses were used to serve as sonar waveforms so as to ensure the camouflage ability of sonar waveforms. A range and velocity measurement combination (RVMC) was designed by using two true sperm whale call pulses which had excellent range resolution (RR) and large Doppler tolerance (DT). The range and velocity estimation methods were developed based on the RVMC. In the sonar receiver, the correlation technology was used to confirm the start and end time of sonar signals and their echoes, and then based on the developed range and velocity estimation method, the range and velocity of the underwater target were obtained. Then, the RVMC was embedded into the true sperm whale call-train to improve the camouflage ability of the sonar signal-train. Finally, experiment results were provided to verify the performance of the proposed method.


2019 ◽  
Vol 36 (1) ◽  
pp. 3-16
Author(s):  
Paul Kendrick ◽  
Sabine von Hünerbein

AbstractDoppler sodar is a technology used for acoustic-based remote sensing of the lower planetary boundary layer. Sodars are often used to measure wind profiles; however, they suffer from problems caused by noise (both acoustic and electrical) and echoes from fixed objects, which can bias radial velocity estimates. An experimental bistatic sodar was developed with 64 independent channels. The device enables flexible beamforming; beams can be tilted at the same angle irrelevant of frequency, a limitation in most commercial devices. This paper presents an alternative sodar signal-processing algorithm for wind profiling using a multifrequency stepped-chirp pulse. A noncoherent matched filter was used to analyze returned signals. The noncoherent matched filter combines radial velocity estimates from multiple frequencies into a single optimization. To identify and separate sources of backscatter, noise, and fixed echoes, a stochastic pattern-recognition technique, Gaussian mixture modeling, was used to postprocess the noncoherent matched filter data. This method allowed the identification and separation of different stochastic processes. After identification, noise and fixed echo components were removed and a clean wind profile was produced. This technique was compared with traditional spectrum-based radial velocity estimation methods, and an improvement in the rejection of fixed echo components was demonstrated; this is one of the major limitations of sodar performance when located in complex terrain and urban environments.


Geophysics ◽  
2018 ◽  
Vol 83 (4) ◽  
pp. M41-M48 ◽  
Author(s):  
Hongwei Liu ◽  
Mustafa Naser Al-Ali

The ideal approach for continuous reservoir monitoring allows generation of fast and accurate images to cope with the massive data sets acquired for such a task. Conventionally, rigorous depth-oriented velocity-estimation methods are performed to produce sufficiently accurate velocity models. Unlike the traditional way, the target-oriented imaging technology based on the common-focus point (CFP) theory can be an alternative for continuous reservoir monitoring. The solution is based on a robust data-driven iterative operator updating strategy without deriving a detailed velocity model. The same focusing operator is applied on successive 3D seismic data sets for the first time to generate efficient and accurate 4D target-oriented seismic stacked images from time-lapse field seismic data sets acquired in a [Formula: see text] injection project in Saudi Arabia. Using the focusing operator, target-oriented prestack angle domain common-image gathers (ADCIGs) could be derived to perform amplitude-versus-angle analysis. To preserve the amplitude information in the ADCIGs, an amplitude-balancing factor is applied by embedding a synthetic data set using the real acquisition geometry to remove the geometry imprint artifact. Applying the CFP-based target-oriented imaging to time-lapse data sets revealed changes at the reservoir level in the poststack and prestack time-lapse signals, which is consistent with the [Formula: see text] injection history and rock physics.


Robotica ◽  
2014 ◽  
Vol 34 (1) ◽  
pp. 43-70 ◽  
Author(s):  
Guilherme Sartori Natal ◽  
Ahmed Chemori ◽  
François Pierrot

SUMMARYThis paper presents a comparison between control/state estimation methods applied on Par2 parallel manipulator for pick-and-place applications as well as a discussion about the mechanical vibrations issue that may become important when reaching very high accelerations. Real-time experiments were performed first to compare two controllers (a linear Proportional-Derivative controller and a nonlinear/adaptive Dual Mode (DM) controller) complied with the same High-Gain Observer (HGO) to estimate articular velocities, and second to compare three state observers (a Lead-lag-based, an Alpha-beta-gamma (ABG) and an HGO) complied with the same nonlinear DM controller. The stability analysis of the Par2 robot under the control of the proposed DM controller (complied with the HighGO for joint velocity estimation) is also provided. Some small mechanical vibrations were noted when reaching 20 G acceleration, which means that it can become an important issue for higher accelerations. Some suggestions are then made for future investigations to avoid/damp these vibrations.


2019 ◽  
Vol 86 (s1) ◽  
pp. 7-11
Author(s):  
David Weik ◽  
Christian Kupsch ◽  
Richard Nauber ◽  
Lars Büttner ◽  
Jürgen Czarske

AbstractUltrasound Imaging with a linear phased array allows measuring turbulent vector profiles in two dimension with two components (2D2C). This is interesting in narrow channels for the application in battery cells or research in magnetohydrodynamics (MHD), where the access to the opaque fluid is often restricted. There are two main velocity estimation methods applicable: the Ultrasound Doppler Velocimetry (UDV) or the Ultrasound Image Velocimetry (UIV). In this work, these methods were evaluated by their attainable measurement uncertainty for the application in narrow channels, where the acquisition of the lateral velocity component is crucial. With a calibration rig, UIV could achieve a total measurement uncertainty of 9.9% and UDV 17.6%. As UIV reaches a 44% lower measurement uncertainty, it is the preferential method to measure lateral flows in narrow channels. In future work, the calibration rig will be adapted to optimize and characterize the flow instrumentation in opaque liquid metals.


2010 ◽  
Vol 3 (1) ◽  
pp. 225-233 ◽  
Author(s):  
Adrien Marion ◽  
Walid Aoudi ◽  
Adrian Basarab ◽  
Philippe Delachartre ◽  
Didier Vray

2011 ◽  
Vol 383-390 ◽  
pp. 1166-1173 ◽  
Author(s):  
Xiao Ming Liu ◽  
Wan Chun Chen ◽  
Xing Liang Yin ◽  
Xiao Lan Xing

In this paper we propose a control scheme of electromechanical actuator with optical encoder feedback. Controlled object is the simplified model of a DC motor while feedback device is an optical encoder. Encoder model is established after analyzing its principle and signal characteristic. Many velocity estimation methods have been compared and the least squares fit filter is selected for our design because of its simple algorithm and capability of predicting velocity and position. Using these predictions as feedback, a variable structure controller based on exponential approach law is adopted in the actuator close-loop control. The relationship between system performance and encoder resolution is exposed. This scheme can be implemented easily with low cost and convenient interface. Its validity is proved by simulation results.


Sign in / Sign up

Export Citation Format

Share Document