Robust two-dimensional ISAR imaging under low SNR via compressed sensing

Author(s):  
Linna Pang ◽  
Shunsheng Zhang ◽  
Xiaozhen Tian
Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 3082 ◽  
Author(s):  
Jiyuan Chen ◽  
Xiaoyi Pan ◽  
Letao Xu ◽  
Wei Wang

Due to the sparsity of the space distribution of point scatterers and radar echo data, the theory of Compressed Sensing (CS) has been successfully applied in Inverse Synthetic Aperture Radar (ISAR) imaging, which can recover an unknown sparse signal from a limited number of measurements by solving a sparsity-constrained optimization problem. In this paper, since the V style modulation(V-FM) signal can mitigate the ambiguity apparent in range and velocity, the dual-channel, two-dimension, compressed-sensing (2D-CS) algorithm is proposed for Bistatic ISAR (Bi-ISAR) imaging, which directly deals with the 2D signal model for image reconstruction based on solving a nonconvex optimization problem. The coupled 2D super-resolution model of the target’s echoes is firstly established; then, the 2D-SL0 algorithm is applied in each channel with different dictionaries, and the final image is obtained by synthesizing the two channels. Experiments are used to test the robustness of the Bi-ISAR imaging framework with the two-dimensional CS method. The results show that the framework is capable accurately reconstructing the Bi-ISAR image within the conditions of low SNR and low measured data.


2015 ◽  
Vol 63 (5) ◽  
pp. 2098-2111 ◽  
Author(s):  
Shunsheng Zhang ◽  
Wei Zhang ◽  
Zhulin Zong ◽  
Zhong Tian ◽  
Tat Soon Yeo

2021 ◽  
Vol 11 (11) ◽  
pp. 5028
Author(s):  
Miaomiao Sun ◽  
Zhenchun Li ◽  
Yanli Liu ◽  
Jiao Wang ◽  
Yufei Su

Low-frequency information can reflect the basic trend of a formation, enhance the accuracy of velocity analysis and improve the imaging accuracy of deep structures in seismic exploration. However, the low-frequency information obtained by the conventional seismic acquisition method is seriously polluted by noise, which will be further lost in processing. Compressed sensing (CS) theory is used to exploit the sparsity of the reflection coefficient in the frequency domain to expand the low-frequency components reasonably, thus improving the data quality. However, the conventional CS method is greatly affected by noise, and the effective expansion of low-frequency information can only be realized in the case of a high signal-to-noise ratio (SNR). In this paper, well information is introduced into the objective function to constrain the inversion process of the estimated reflection coefficient, and then, the low-frequency component of the original data is expanded by extracting the low-frequency information of the reflection coefficient. It has been proved by model tests and actual data processing results that the objective function of estimating the reflection coefficient constrained by well logging data based on CS theory can improve the anti-noise interference ability of the inversion process and expand the low-frequency information well in the case of a low SNR.


2021 ◽  
Author(s):  
Xianglei Liu ◽  
Jingdan Liu ◽  
Cheng Jiang ◽  
Fiorenzo Vetrone ◽  
Jinyang Liang

Algorithms ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 126 ◽  
Author(s):  
Bin Wang ◽  
Li Wang ◽  
Hao Yu ◽  
Fengming Xin

The compressed sensing theory has been widely used in solving undetermined equations in various fields and has made remarkable achievements. The regularized smooth L0 (ReSL0) reconstruction algorithm adds an error regularization term to the smooth L0(SL0) algorithm, achieving the reconstruction of the signal well in the presence of noise. However, the ReSL0 reconstruction algorithm still has some flaws. It still chooses the original optimization method of SL0 and the Gauss approximation function, but this method has the problem of a sawtooth effect in the later optimization stage, and the convergence effect is not ideal. Therefore, we make two adjustments to the basis of the ReSL0 reconstruction algorithm: firstly, we introduce another CIPF function which has a better approximation effect than Gauss function; secondly, we combine the steepest descent method and Newton method in terms of the algorithm optimization. Then, a novel regularized recovery algorithm named combined regularized smooth L0 (CReSL0) is proposed. Under the same experimental conditions, the CReSL0 algorithm is compared with other popular reconstruction algorithms. Overall, the CReSL0 algorithm achieves excellent reconstruction performance in terms of the peak signal-to-noise ratio (PSNR) and run-time for both a one-dimensional Gauss signal and two-dimensional image reconstruction tasks.


Sign in / Sign up

Export Citation Format

Share Document