The radiation environment and effects for future ESA cosmic vision missions

Author(s):  
J. Sorensen ◽  
G. Santin
2019 ◽  
Vol 15 (S359) ◽  
pp. 72-77
Author(s):  
Luigi Spinoglio ◽  
Juan A. Fernández-Ontiveros ◽  
Sabrina Mordini

AbstractThe evolution of galaxies at Cosmic Noon (1 < z < 3) passed through a dust-obscured phase, during which most stars formed and black holes in galactic nuclei started to shine, which cannot be seen in the optical and UV, but it needs rest frame mid-to-far IR spectroscopy to be unveiled. At these frequencies, dust extinction is minimal and a variety of atomic and molecular transitions, tracing most astrophysical domains, occur. The Space Infrared telescope for Cosmology and Astrophysics (SPICA), currently under evaluation for the 5th Medium Size ESA Cosmic Vision Mission, fully redesigned with its 2.5-m mirror cooled down to T < 8K will perform such observations. SPICA will provide for the first time a 3-dimensional spectroscopic view of the hidden side of star formation and black hole accretion in all environments, from voids to cluster cores over 90% of cosmic time. Here we outline what SPICA will do in galaxy evolution studies.


2018 ◽  
Vol 14 (S342) ◽  
pp. 29-36
Author(s):  
M. Guainazzi ◽  
M. S. Tashiro

AbstractX-ray spectroscopy is key to address the theme of “The Hot Universe”, the still poorly understood astrophysical processes driving the cosmological evolution of the baryonic hot gas traceable through its electromagnetic radiation. Two future X-ray observatories: the JAXA-led XRISM (due to launch in the early 2020s), and the ESA Cosmic Vision L-class mission Athena (early 2030s) will provide breakthroughs in our understanding of how and when large-scale hot gas structures formed in the Universe, and in tracking their evolution from the formation epoch to the present day.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 243-243
Author(s):  
P. O'Brien ◽  
P. Jonker

AbstractAthena is the second large mission selected in the ESA Cosmic Vision plan. With its large collecting area, high spectral-energy resolution (X-IFU instrument) and impressive grasp (WFI instrument), Athena will truly revolutionise X-ray astronomy. The most prodigious sources of high-energy photons are often transitory in nature. Athena will provide the sensitivity and spectral resolution coupled with rapid response to enable the study of the dynamic sky. Potential sources include: distant Gamma-Ray Bursts to probe the reionisation epoch and find missing baryons in the cosmic web; tidal disruption events to reveal dormant supermassive and intermediate-mass black holes; and supernova explosions to understand progenitors and their environments. We illustrate Athenas capabilities and show how it will be able to constrain the nature of explosive transients including gas metallicity and dynamics.


2009 ◽  
Author(s):  
R. Lindberg ◽  
A. Stankov ◽  
M. Fridlund ◽  
N. Rando

2012 ◽  
Vol 8 (S293) ◽  
pp. 429-434
Author(s):  
Anthony Boccaletti ◽  
Anne-Lise Maire ◽  
Raphaël Galicher ◽  
Pierre Baudoz ◽  
Dimitri Mawet ◽  
...  

AbstractSPICES (Spectro-Polarimetric Imaging and Characterization of Exoplanetary Systems) was proposed in 2010 for a five-year M-class mission in the context of ESA Cosmic Vision. Its purpose is to image and characterize long-period extrasolar planets located at several AUs (0.5-10 AU) from nearby stars (<25 pc) with masses ranging from a few Jupiter masses down to super-Earths (~2 Earth radii, ~10 M⊕), possibly habitable. In addition, circumstellar disks as faint as a few times the zodiacal light in the Solar System can be studied. SPICES is based on a 1.5-m off-axis telescope and can perform spectro-polarimetric measurements in the visible (450 - 900 nm) at a spectral resolution of about 40. This paper summarizes the top science program and the choices made to conceive the instrument. The performance is illustrated for a few emblematic cases.


2012 ◽  
Vol 8 (S293) ◽  
pp. 448-453 ◽  
Author(s):  
Fabien Malbet ◽  
Antoine Crouzier ◽  
Renaud Goullioud ◽  
Pierre-Olivier Lagage ◽  
Alain Léger ◽  
...  

AbstractMany planets have been detected so far but very few around nearby stars that could allow characterization of their atmosphere thanks to their proximity. There are known exoplanets around less than 8.3% of the FGK stars of the Solar neighborhood (d<20 pc) and the vast majority of them are giant planets. Within the ESA Cosmic Vision 2015-2025 plan, the scientific goal of the NEAT (Nearby Earth Astrometric Telescope) mission is to detect and characterize planetary systems around these nearby stars in an exhaustive way down to 1 Earth-mass in the habitable zone. This survey would provide the actual planetary masses, the full characterization of the orbits including their inclination, for all the components of the planetary system down to the Earth-mass limit. NEAT will continue the work performed by Hipparcos and Gaia by reaching a precision that is improved by two orders of magnitude on pointed targets compared to Gaia. We present the free-flyer concept that has been submitted to the 2010 ESA call for M3 missions with two satellites flying in formation 40m apart.


2008 ◽  
Author(s):  
R. Lindberg ◽  
D. Lumb ◽  
R. den Hartog ◽  
P. Gondoin ◽  
N. Rando ◽  
...  

Author(s):  
G. Bascoul ◽  
K. Sanchez ◽  
G. Perez ◽  
F. Bezerra ◽  
H. Chauvin

Abstract Pulsed laser for radiation sensitivity evaluation has become a common tool used in research and industrial laboratory. This paper aims to highlight an approach to understand weaknesses of a component under radiation environment using a short pulsed width laser beam coupled to thermography technique, heavy ions test inputs and physical analysis. This paper is based on a study of a PWM device embedded on voltage converter.


2020 ◽  
Author(s):  
Jared J. Luxton ◽  
Miles J. McKenna ◽  
Lynn E. Taylor ◽  
Kerry A. George ◽  
Sara Zwart ◽  
...  

Author(s):  
Amita Bedar ◽  
Beena G. Singh ◽  
Pradip K. Tewari ◽  
Ramesh C. Bindal ◽  
Soumitra Kar

Abstract Cerium oxide (ceria) contains two stable states of cerium ions (Ce3+ and Ce4+). The presence of these two states and the ability to swap from one state to another (Ce3+ ↔ Ce4+) by scavenging the highly reactive oxygen species (ROS) generated from radiolysis of water, ensure the enhanced stability of polysulfone (Psf) membranes in the γ-radiation environment. In this study, the ROS scavenging ability of ceria was studied. Ceria nanoparticles were found to scavenge ROS like hydroxyl radicals and hydrogen peroxide (H2O2). The H2O2 scavenging is due to the peroxidase-like catalytic activity of ceria nanoparticles. The ROS scavenging is responsible for offering protection to the Psf host matrix and in turn the stability to the Psf-ceria mixed-matrix membranes (MMMs) in γ-radiation environment. Thus, presence of ceria nanoparticles provides an opportunity for utilizing Psf-ceria MMMs in ionizing radiation environment with increased life span, without compromise in the performance.


Sign in / Sign up

Export Citation Format

Share Document