A Novel Method for Predicting Action Switching in Continuous Motion based on sEMG Signals

Author(s):  
Xin Shi ◽  
Jiaqing Zhu ◽  
Pengjie Qin ◽  
Haoyang Cui
Author(s):  
Kairu Li ◽  
Yu Zhou ◽  
Dalin Zhou ◽  
Jia Zeng ◽  
Yinfeng Fang ◽  
...  

Tactile feedback is beneficial to improve the hand prosthesis performance, alleviate phantom pain, reduce muscle fatigue, etc. During the manipulation process, muscle fatigue not only causes discomfort to prosthesis users but also disturbs the surface electromyographic (sEMG)-based motion recognition, which significantly deteriorates the prosthesis functional performance. Efforts have been made to explore appropriate signal processing algorithms which could be less influenced by muscle fatigue. However, few studies concern how to alleviate muscle fatigue directly. Thus, this study proposes a novel method to avoid excessive muscle fatigue based on electrotactile feedback. A potable electrotactile stimulator is developed with adjustable parameters, multiple channels and wireless communication. It is implemented in a virtual hand grasping platform driven by sEMG signals to investigate the impact of tactile feedback on muscle fatigue. Experimental results show a higher success rate of grasping with electrotactile feedback than that with no feedback. Moreover, compared with grasp in the no feedback condition, there is an observable decrease of sEMG intensity when grasping a heavy object with electrotactile feedback, despite a comparable performance on the light and medium objects in both feedback conditions. It indicates that tactile feedback helps to alleviate muscle fatigue caused by excessive muscle contraction, especially when large strength is needed.


Author(s):  
M.A. Gregory ◽  
G.P. Hadley

The insertion of implanted venous access systems for children undergoing prolonged courses of chemotherapy has become a common procedure in pediatric surgical oncology. While not permanently implanted, the devices are expected to remain functional until cure of the primary disease is assured. Despite careful patient selection and standardised insertion and access techniques, some devices fail. The most commonly encountered problems are colonisation of the device with bacteria and catheter occlusion. Both of these difficulties relate to the development of a biofilm within the port and catheter. The morphology and evolution of biofilms in indwelling vascular catheters is the subject of ongoing investigation. To date, however, such investigations have been confined to the examination of fragments of biofilm scraped or sonicated from sections of catheter. This report describes a novel method for the extraction of intact biofilms from indwelling catheters.15 children with Wilm’s tumour and who had received venous implants were studied. Catheters were removed because of infection (n=6) or electively at the end of chemotherapy.


GeroPsych ◽  
2012 ◽  
Vol 25 (4) ◽  
pp. 235-245 ◽  
Author(s):  
Katja Franke ◽  
Christian Gaser

We recently proposed a novel method that aggregates the multidimensional aging pattern across the brain to a single value. This method proved to provide stable and reliable estimates of brain aging – even across different scanners. While investigating longitudinal changes in BrainAGE in about 400 elderly subjects, we discovered that patients with Alzheimer’s disease and subjects who had converted to AD within 3 years showed accelerated brain atrophy by +6 years at baseline. An additional increase in BrainAGE accumulated to a score of about +9 years during follow-up. Accelerated brain aging was related to prospective cognitive decline and disease severity. In conclusion, the BrainAGE framework indicates discrepancies in brain aging and could thus serve as an indicator for cognitive functioning in the future.


2014 ◽  
Vol 62 (S 02) ◽  
Author(s):  
J. Photiadis ◽  
M. Musci ◽  
O. Miera ◽  
S. Ovroutski ◽  
A. Mekkawy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document