Measuring Leakage Power in Nanometer CMOS 6T-SRAM Cells

Author(s):  
Marcos De Alba-rosano ◽  
Andres Garcia-garcia
Keyword(s):  
2010 ◽  
Vol 108-111 ◽  
pp. 625-630 ◽  
Author(s):  
Yang Bo Wu ◽  
Jian Ping Hu ◽  
Hong Li

In deep sub-micro CMOS process, the leakage power is becoming a significant proportion in power dissipation. Hence, estimating the leakage power of CMOS circuits is very important in low-power design. In this paper, an estimation technology for the total leakage power of adiabatic logic circuits by using SPICE is proposed. The basic principle of power estimation for traditional CMOS circuits using SPICE is introduced. According to the energy dissipation characteristic of adiabatic circuits, the estimation technology for leakage power is discussed. Taken as an example, the estimation for total leakage power dissipations of PAL-2N (pass-transistor adiabatic logic with NMOS pull-down configuration) circuits is illustrated using the proposed estimation technology.


2010 ◽  
Vol 159 ◽  
pp. 155-161
Author(s):  
Jin Tao Jiang ◽  
Yu Zhang ◽  
Jian Ping Hu

With rapid technology scaling, the proportion of the leakage power catches up with dynamic power gradually. The leakage dissipation through the gate oxide is becoming an important component of power consumption in currently used nanometer CMOS processes without metal gate structure. This paper presents adiabatic sequential circuits using P-type complementary pass-transistor adiabatic logic circuit (P-CPAL) to reduce the gate-leakage power dissipations. A practical sequential system with a mode-10 counter is demonstrated using the P-CPAL scheme. All circuits are simulated using HSPICE under 65nm and 90nm CMOS processes. Simulations show that the mode-10 counter using P-CPAL circuits obtains significant improvement in terms of power consumption over the traditional N-type CPAL counterparts.


2010 ◽  
Vol 121-122 ◽  
pp. 97-102 ◽  
Author(s):  
Wei Qiang Zhang ◽  
Li Su ◽  
Li Fang Ye ◽  
Jian Ping Hu

The leakage dissipations of nano-circuits have become a critical concern. Estimating the leakage power of nano-circuits is very important in low-power design. This paper presents a new estimation technology for the active leakage dissipations of adiabatic logic circuits. Based on the power dissipation models of adiabatic circuits, active leakage dissipations are estimated by testing total leakage dissipations with additional capacitances on load nodes of the adiabatic circuits using HSPICE simulations. Taken as an example, the estimation for dynamic and active leakage power dissipations of CPAL (Complementary Pass-transistor Adiabatic Logic) circuits is demonstrated using the proposed estimation technology. The simulation results show that the proposed estimation technology can accurately estimate the active leakage dissipations of CPAL circuits with an accepted error over a wide range of frequencies.


2018 ◽  
Vol 6 (2) ◽  
pp. 1
Author(s):  
SEKHAR REDDY M. CHANDRA ◽  
REDDY P. RAMANA ◽  
◽  

Sign in / Sign up

Export Citation Format

Share Document