A Formation Control Method Combining the Global and Local Informations

Author(s):  
Qingyang Chen ◽  
Gaowei Jia ◽  
Juncan Lin ◽  
Yafei Lu ◽  
Peng Wang
2021 ◽  
Vol 9 (7) ◽  
pp. 772
Author(s):  
Huixuan Fu ◽  
Shichuan Wang ◽  
Yan Ji ◽  
Yuchao Wang

This paper addressed the formation control problem of surface unmanned vessels with model uncertainty, parameter perturbation, and unknown environmental disturbances. A formation control method based on the control force saturation constraint and the extended state observer (ESO) was proposed. Compared with the control methods which only consider the disturbances from external environment, the method proposed in this paper took model uncertainties, parameter perturbation, and external environment disturbances as the compound disturbances, and the ESO was used to estimate and compensate for the disturbances, which improved the anti-disturbance performance of the controller. The formation controller was designed with the virtual leader strategy, and backstepping technique was designed with saturation constraint (SC) function to avoid the lack of force of the actuator. The stability of the closed-loop system was analyzed with the Lyapunov method, and it was proved that the whole system is uniformly and ultimately bounded. The tracking error can converge to arbitrarily small by choosing reasonable controller parameters. The comparison and analysis of simulation experiments showed that the controller designed in this paper had strong anti-disturbance and anti-saturation performance to the compound disturbances of vessels and can effectively complete the formation control.


2019 ◽  
Vol 42 (5) ◽  
pp. 942-950
Author(s):  
Kai Chang ◽  
Dailiang Ma ◽  
Xingbin Han ◽  
Ning Liu ◽  
Pengpeng Zhao

This paper presents a formation control method to solve the moving target tracking problem for a swarm of unmanned aerial vehicles (UAVs). The formation is achieved by the artificial potential field with both attractive and repulsive forces, and each UAV in the swarm will be driven into a leader-centered spherical surface. The leader is controlled by the attractive force by the moving target, while the Lyapunov vectors drive the leader UAV to a fly-around circle of the target. Furthermore, the rotational vector-based potential field is applied to achieve the obstacle avoidance of UAVs with smooth trajectories and avoid the local optima problem. The efficiency of the developed control scheme is verified by numerical simulations in four scenarios.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2295
Author(s):  
Huifen Hong ◽  
He Wang

This paper investigates the fixed-time formation (FixF) control problem for second-order multi-agent systems (MASs), where each agent is subject to disturbance and the communication network is general directed. First, a FixF protocol is presented based on the backstepping technique, where the distributed cooperative variable structure control method is utilized to handle the bounded disturbances. Then, to remove the dependence of control gains on the global information, a practical adaptive FixF control is presented, where the MASs can achieve formation with a bounded error within fixed time. Finally, a numerical example is presented to validate the theoretical result.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Erxin Gao ◽  
Xin Ning ◽  
Zheng Wang ◽  
Xiaokui Yue

This paper investigates the antidisturbance formation control problem for a class of cluster aerospace unmanned systems (CAUSs) suffering from multisource high-dynamic uncertainties. Firstly, to estimate and compensate the uncertainties existing in CAUS coordinate dynamics, an adaptive antidisturbance formation control law, which is combined by a robust adaptive control law and the second order disturbance observer, has been designed. Secondly, aiming at the adverse influences caused by the nonlinear time-varying nonlinearities existing in the formation flight dynamics, the radial basis function neural network (RBFNN) is introduced. Furthermore, considering the rapidly varying characteristics of the aforementioned formation flight nonlinearities, a novel board RBFNN (B-RBFNN) has been constructed and utilized to improve the approximation and compensation performance. In virtue of the fusing of the B-RBFNN and the second-order disturbance observer-based adaptive formation control law, the rapid response rate and the higher control accuracy of the formation control system can be achieved. As a result, a novel B-RBFNN-based intelligence adaptive antidisturbance formation control algorithm has been established for CAUS trajectory coordination and formation flight. Numerical simulation results are proposed to illustrate the effectiveness and advantages of the proposed B-RBFNN-based intelligent adaptive formation control method for the CAUS.


2021 ◽  
Vol 11 (19) ◽  
pp. 9170
Author(s):  
Peng Xu ◽  
Jin Tao ◽  
Minyi Xu ◽  
Guangming Xie

This paper mainly investigates formation control problems for a group of anonymous mobile robots with unknown nonlinear disturbances on a plane, in which all robots can asymptotically converge to any formation patterns without collision, and maintain any required relative distance with neighboring robots. To solve this problem, all robots are modeled as kinematic points and can only acquire information from other robots and their targets. Furthermore, a flexible distributed control law is designed to solve the formation problem while no collisions between any robots can be guaranteed during the whole process. The outstanding feature of the proposed control method is that it can force all mobile robots to form not only uniform circle formations but also non-uniform and non-circular formations with moving target centers. At last, both theoretical analysis and numerical simulations show the feasibility of the proposed control law.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Xiaohua Zhang ◽  
Junli Gao ◽  
Wenfeng Zhang ◽  
Tao Zeng ◽  
Liping Ye

This paper presents the disturbance observers-based distributed formation control for multiple quadrotor aircrafts with external disturbances and uncertain parameters using multi-agent theory and finite-time control method. Firstly, the finite-time disturbance observers are proposed to handle the external disturbances on the position-loop. Similarly, when there are both the uncertain parameters and external disturbances on the attitude-loop, the finite-time disturbance observers are designed to estimate the total lump disturbances. By skillfully using homogeneous system theory, Lyapunov theory, and multi-agent theory, the distributed formation control algorithms are developed. Finally, through simulations, the efficiency of the proposed method (including the convergence rate and disturbance rejection) is verified.


2021 ◽  
pp. 5251-5263
Author(s):  
Miao Miao Zhang ◽  
Wen Ju ◽  
Hong Quan Yun ◽  
Yuecheng Liu ◽  
Ye Mo Liu

Sign in / Sign up

Export Citation Format

Share Document