Sigmoid Super-Twisting Extended State Observer and Sliding Mode Controller for Quadrotor UAV Attitude System With Unknown Disturbance

Author(s):  
Yongfeng Rong ◽  
Ran Jiao ◽  
Song Kang ◽  
Wusheng Chou
2020 ◽  
Vol 10 (11) ◽  
pp. 3719
Author(s):  
Ran Jiao ◽  
Wusheng Chou ◽  
Yongfeng Rong ◽  
Mingjie Dong

Aerial operation with unmanned aerial vehicle (UAV) manipulator is a promising field for future applications. However, the quadrotor UAV manipulator usually suffers from several disturbances, such as external wind and model uncertainties, when conducting aerial tasks, which will seriously influence the stability of the whole system. In this paper, we address the problem of high-precision attitude control for quadrotor manipulator which is equipped with a 2-degree-of-freedom (DOF) robotic arm under disturbances. We propose a new sliding-mode extended state observer (SMESO) to estimate the lumped disturbance and build a backstepping attitude controller to attenuate its influence. First, we use the saturation function to replace discontinuous sign function of traditional SMESO to alleviate the estimation chattering problem. Second, by innovatively introducing super-twisting algorithm and fuzzy logic rules used for adaptively updating the observer switching gains, the fuzzy adaptive saturation super-twisting extended state observer (FASTESO) is constructed. Finally, in order to further reduce the impact of sensor noise, we invite a tracking differentiator (TD) incorporated into FASTESO. The proposed control approach is validated with effectiveness in several simulations and experiments in which we try to fly UAV under varied external disturbances.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Ouxun Li ◽  
Ju Jiang ◽  
Li Deng ◽  
Shutong Huang

Aiming at the uncertainty and external disturbance sensitivity of the near space vehicles (NSV), a novel sliding mode controller based on the high-order linear extended state observer (LESO) is designed in this paper. In the proposed sliding mode controller, the double power reaching law is adopted to enhance the state convergence rate, and the high-order LESO is designed to improve the antidisturbance ability. Moreover, the appropriate observer bandwidth and extended order are selected to further reduce or even eliminate the disturbance by analyzing their influences on the observer performance. Finally, the simulation demonstrations are given for the NSV control system with uncertain parameters and external disturbances. The theoretical analyses and simulation results consistently indicate that the proposed high-order LESO with carefully selected extended order and observer bandwidth has better performance than the traditional ones for the nonlinear NSV system with parametric uncertainty and external disturbance.


2014 ◽  
Vol 716-717 ◽  
pp. 1689-1693
Author(s):  
Hai Long Xing ◽  
Juan Li

This paper proposes the sliding mode control design based on extended state observer control approch for the flight attitude system.The extended state observer (ESO) with new structure is used to estimate the total disturbance and to compensate the control object so that the flight attitude system can be simplified. Then a sliding mode controller is used to stabilize this simplified system. Finally, a numerical simulation shows the effectiveness of the proposed control design method.


Author(s):  
Chengbao Zhou ◽  
Di Zhou

The nonlinear attitude motion equations of flexible spacecraft described by the Euler angles are expressed in the vector form. Based on dynamic surface control, a new robust dynamic surface sliding mode controller is proposed for the attitude tracking and active vibration suppression of flexible spacecraft in the presence of parameter uncertainty and external disturbances. Then, a novel robust dynamic surface finite time sliding mode controller is proposed with an extended state observer such that the uncertainties can be estimated. Lyapunov stability analyses show that the two controllers can guarantee the asymptotical stability of the attitude control system. The undesirable vibration of flexible spacecraft is also actively suppressed by the modal velocity feedback approach. Finally, simulation results verified the effectiveness of the presented control algorithms.


Sign in / Sign up

Export Citation Format

Share Document