A Robotic Communication Middleware Combining High Performance and High Reliability

Author(s):  
Wei Liu ◽  
Hao Wu ◽  
Ziyue Jiang ◽  
Yifan Gong ◽  
Jiangming Jin
2021 ◽  
Vol 6 (51) ◽  
pp. eaaz5796
Author(s):  
I. D. Sîrbu ◽  
G. Moretti ◽  
G. Bortolotti ◽  
M. Bolignari ◽  
S. Diré ◽  
...  

Future robotic systems will be pervasive technologies operating autonomously in unknown spaces that are shared with humans. Such complex interactions make it compulsory for them to be lightweight, soft, and efficient in a way to guarantee safety, robustness, and long-term operation. Such a set of qualities can be achieved using soft multipurpose systems that combine, integrate, and commute between conventional electromechanical and fluidic drives, as well as harvest energy during inactive actuation phases for increased energy efficiency. Here, we present an electrostatic actuator made of thin films and liquid dielectrics combined with rigid polymeric stiffening elements to form a circular electrostatic bellow muscle (EBM) unit capable of out-of-plane contraction. These units are easy to manufacture and can be arranged in arrays and stacks, which can be used as a contractile artificial muscle, as a pump for fluid-driven soft robots, or as an energy harvester. As an artificial muscle, EBMs of 20 to 40 millimeters in diameter can exert forces of up to 6 newtons, lift loads over a hundred times their own weight, and reach contractions of over 40% with strain rates over 1200% per second, with a bandwidth over 10 hertz. As a pump driver, these EBMs produce flow rates of up to 0.63 liters per minute and maximum pressure head of 6 kilopascals, whereas as generator, they reach a conversion efficiency close to 20%. The compact shape, low cost, simple assembling procedure, high reliability, and large contractions make the EBM a promising technology for high-performance robotic systems.


1988 ◽  
Vol 110 (4) ◽  
pp. 572-577
Author(s):  
D. J. Folenta

This paper presents a brief description and several illustrations of a new concept of marine reversing gears that utilize high-performance differentially driven epicyclic gear arrangements. This new marine power transmission has the potential to offer high reliability, simplicity, light weight, high mechanical efficiency, compactness, and technological compatibility with aircraft derivative marine gas turbine engines. Further, this new reversing gear minimizes the danger of driving the free turbine in reverse as might be the case with conventional parallel shaft reversing gear arrangements. To illustrate the weight reduction potential, a modern naval ship propulsion system utilizing an aircraft derivative gas turbine engine as the prime mover in conjunction with a conventional parallel shaft reversing gear can be compared to the subject reversing gear differential. A typical 18,642 kW (25,000 hp) marine gas turbine engine might weigh approximately 5000 kg (11,000 lb) and a conventional marine technology parallel shaft reversing gear might weigh on the order of 90,000 to 136,000 kg (200,000 to 300,000 lb). Using gear technology derived from the aircraft industry, a functionally similar differentially driven marine reversing gear might weigh approximately 13,600 kg (30,000 lb).


2012 ◽  
Vol 614-615 ◽  
pp. 1299-1302
Author(s):  
Ming Jing Li ◽  
Yu Bing Dong ◽  
Guang Liang Cheng

Multiple high speed CMOS cameras composing intersection system to splice large effect field of view(EFV). The key problem of system is how to locate multiple CMOS cameras in suitable position. Effect field of view was determined according to size, quantity and dispersion area of objects, so to determine camera position located on below, both sides and ahead to moving targets. This paper analyzes effect splicing field of view, operating range etc through establishing mathematical model and MATLAB simulation. Location method of system has advantage of flexibility splicing, convenient adjustment, high reliability and high performance-price ratio.


2011 ◽  
Author(s):  
L. Bao ◽  
P. Leisher ◽  
J. Wang ◽  
M. Devito ◽  
D. Xu ◽  
...  

2002 ◽  
Vol 124 (2) ◽  
pp. 329-335 ◽  
Author(s):  
Akira Goto ◽  
Motohiko Nohmi ◽  
Takaki Sakurai ◽  
Yoshiyasu Sogawa

A computer-aided design system has been developed for hydraulic parts of pumps including impellers, bowl diffusers, volutes, and vaned return channels. The key technologies include three-dimensional (3-D) CAD modeling, automatic grid generation, CFD analysis, and a 3-D inverse design method. The design system is directly connected to a rapid prototyping production system and a flexible manufacturing system composed of a group of DNC machines. The use of this novel design system leads to a drastic reduction of the development time of pumps having high performance, high reliability, and innovative design concepts. The system structure and the design process of “Blade Design System” and “Channel Design System” are presented. Then the design examples are presented briefly based on the previous publications, which included a centrifugal impeller with suppressed secondary flows, a bowl diffuser with suppressed corner separation, a vaned return channel of a multistage pump, and a volute casing. The results of experimental validation, including flow fields measurements, were also presented and discussed briefly.


2014 ◽  
Vol 217-218 ◽  
pp. 471-480
Author(s):  
Ivano Gattelli ◽  
Gian Luigi Chiarmetta ◽  
Marcello Boschini ◽  
Renzo Moschini ◽  
Mario Rosso ◽  
...  

This paper concerns with the optimisation of the innovative rheocasting process to produce a new generation of brake callipers, characterised by very high reliability and strength. The attained very promising properties favoured their use on a very high performance car and the presented technique can be further extended for other important challenging applications. The prototype components are produced using T6 heat treated A357 alloy. Results on the samples machined directly from the produced callipers are in detail described and analysed. Pieces exhibiting some small defects, individuated by non-destructive tests, as well as defectless pieces have been underlined to severe industrial tests, e.g. high pressure tight, as well as severe bench tests, and it has been observed that the proposed technological process assure the fulfilment of the requirements contained in standards.


2016 ◽  
Vol 2016 (DPC) ◽  
pp. 002018-002053
Author(s):  
Swapan Bhattacharya ◽  
Fei Xie ◽  
Daniel F. Baldwin ◽  
Han Wu ◽  
Kelley Hodge ◽  
...  

Reworkable underfills and edge bond adhesives are finding increasing utility in high reliability and harsh environment applications. The ASICs and FPGAs often used in these systems typically require designs incorporating large BGAs and ceramic BGAs. For these high reliability and harsh environment applications, these packages typically require underfill or edge bond materials to achieve the needed thermal cycle, mechanical shock and vibration reliability. Moreover, these applications often incorporate high dollar value printed circuit boards (on the order of thousands or tens of thousands of dollars per PCB) hence the need to rework these assemblies and maintain the integrity of the PCB and high dollar value BGAs. This further complicates the underfill requirements with a reworkability component. Reworkable underfills introduce a number of process issues that can result in significant variability in reliability performance. In contrast, edge bond adhesives provide a high reliability solution with substantial benefits over underfills. One interesting question for the large area BGA applications of reworkable underfills and edge bond materials is the comparison of their reliability performance. This paper presents a study of reliability comparison between two robust selected reworkable underfill and edge bond adhesive in a test vehicle including 11mm, 13mm, and 27mm large area BGAs. Process development for those large area BGA applications was also conducted on the underfill process and edge bond process to determine optimum process conditions. For underfill processing, establishing an underfill process that minimizing/eliminates underfill voids is critical. For edge bond processing, establishing an edge bond that maximizes bond area without encapsulating the solder balls is key to achieving high reliability. In addition, this paper also presents a study of new high performance reworkable edge bond materials designed to improve the reliability of large area BGAs and ceramic BGAs assemblies while maintaining good reworkablity. Four edge bond materials (commercially available) were studied and compared for a test vehicles with 12mm BGAs. The reliability testing protocol included board level thermal cycling (−40 to 125°C), mechanical drop testing (2900 G), and random vibration testing (3 G, 10 – 1000 Hz).


2015 ◽  
Vol 2015 (1) ◽  
pp. 000627-000632 ◽  
Author(s):  
Swapan K. Bhattacharya ◽  
Fei Xie ◽  
Han Wu ◽  
Kelley Hodge ◽  
Keck Pathammavong ◽  
...  

The objective of this study is to design and fabricate a high reliability LED Insulated Metal Substrate (IMS) package to complex heat sink attachment using an advanced thermal interface material (TIM). The assembly consists of LED IMS parts bonded to a heat spreader/sink using an advanced TIM and a corner bond material to quickly and accurately secure the LEDs in position. The corner bond adhesive is snap cured for fast machine cycle times while the high performance, high adhesion TIM materials cure throughout the rest of the assembly operation. This approach allows high accuracy LED bonding without the need for alignment pins or fasteners to anchor to the IMS. The IMS attached to the heat sink is then electrically interconnected with a thin flex substrate on top of the IMS. This approach is expected to replace the current mechanical fastners and low strength silicone TIM materials and reduce the cycle time and overall placement cost which are key drivers especially for the automotive industry.


Sign in / Sign up

Export Citation Format

Share Document