Low cost, rigid to flex interposer using a spray coated intrinsically conductive polymer in a roll to-roll process

Author(s):  
Indranil Bose ◽  
Detlef Bonfert ◽  
Sebastian Heim ◽  
Karlheinz Bock
Micromachines ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 474 ◽  
Author(s):  
Bei Wang ◽  
Manuel Baeuscher ◽  
Xiaodong Hu ◽  
Markus Woehrmann ◽  
Katharina Becker ◽  
...  

A novel capacitive sensor for measuring the water-level and monitoring the water quality has been developed in this work by using an enhanced screen printing technology. A commonly used environment-friendly conductive polymer poly(3,4-ethylenedioxythiophene):poly (styrenesulfonate) (PEDOT:PSS) for conductive sensors has a limited conductivity due to its high sheet resistance. A physical treatment performed during the printing process has reduced the sheet resistance of printed PEDOT:PSS on polyethylenterephthalat (PET) substrate from 264.39 Ω/sq to 23.44 Ω/sq. The adhesion bonding force between printed PEDOT:PSS and the substrate PET is increased by using chemical treatment and tested using a newly designed adhesive peeling force test. Using the economical conductive ink PEDOT:PSS with this new physical treatment, our capacitive sensors are cost-efficient and have a sensitivity of up to 1.25 pF/mm.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Tero Jalkanen ◽  
Anni Määttänen ◽  
Ermei Mäkilä ◽  
Jaani Tuura ◽  
Martti Kaasalainen ◽  
...  

A roll-to-roll compatible fabrication process of porous silicon (pSi) based sensing elements for a real-time humidity monitoring is described. The sensing elements, consisting of printed interdigitated silver electrodes and a spray-coated pSi layer, were fabricated on a coated paper substrate by a two-step process. Capacitive and resistive responses of the sensing elements were examined under different concentrations of humidity. More than a three orders of magnitude reproducible decrease in resistance was measured when the relative humidity (RH) was increased from 0% to 90%. A relatively fast recovery without the need of any refreshing methods was observed with a change in RH. Humidity background signal and hysteresis arising from the paper substrate were dependent on the thickness of sensing pSi layer. Hysteresis in most optimal sensing element setup (a thick pSi layer) was still noticeable but not detrimental for the sensing. In addition to electrical characterization of sensing elements, thermal degradation and moisture adsorption properties of the paper substrate were examined in connection to the fabrication process of the silver electrodes and the moisture sensitivity of the paper. The results pave the way towards the development of low-cost humidity sensors which could be utilized, for example, in smart packaging applications or in smart cities to monitor the environment.


2013 ◽  
Vol 844 ◽  
pp. 158-161 ◽  
Author(s):  
M.I. Maksud ◽  
Mohd Sallehuddin Yusof ◽  
M. Mahadi Abdul Jamil

Recently low cost production is vital to produce printed electronics by roll to roll manufacturing printing process like a flexographic. Flexographic has a high speed technique which commonly used for printing onto large area flexible substrates. However, the minimum feature sizes achieved with roll to roll printing processes, such as flexographic is in the range of fifty microns. The main contribution of this limitation is photopolymer flexographic plate unable to be produced finer micron range due to film that made by Laser Ablation Mask (LAMs) technology not sufficiently robust and consequently at micron ranges line will not be formed on the printing plate. Hence, polydimethylsiloxane (PDMS) is used instead of photopolymer. Printing trial had been conducted and multiple solid lines successfully printed for below fifty microns line width with no interference between two adjacent lines of the printed images.


2018 ◽  
Vol 24 (4) ◽  
pp. 739-743 ◽  
Author(s):  
Simone Luigi Marasso ◽  
Matteo Cocuzza ◽  
Valentina Bertana ◽  
Francesco Perrucci ◽  
Alessio Tommasi ◽  
...  

Purpose This paper aims to present a study on a commercial conductive polylactic acid (PLA) filament and its potential application in a three-dimensional (3D) printed smart cap embedding a resistive temperature sensor made of this material. The final aim of this study is to add a fundamental block to the electrical characterization of printed conductive polymers, which are promising to mimic the electrical performance of metals and semiconductors. The studied PLA filament demonstrates not only to be suitable for a simple 3D printed concept but also to show peculiar characteristics that can be exploited to fabricate freeform low-cost temperature sensors. Design/methodology/approach The first part is focused on the conductive properties of the PLA filament and its temperature dependency. After obtaining a resistance temperature characteristic of this material, the same was used to fabricate a part of a 3D printed smart cap. Findings An approach to the characterization of the 3D printed conductive polymer has been presented. The major results are related to the definition of resistance vs temperature characteristic of the material. This model was then exploited to design a temperature sensor embedded in a 3D printed smart cap. Practical implications This study demonstrates that commercial conductive PLA filaments can be suitable materials for 3D printed low-cost temperature sensors or constitutive parts of a 3D printed smart object. Originality/value The paper clearly demonstrates that a new generation of 3D printed smart objects can already be obtained using low-cost commercial materials.


2005 ◽  
Vol 865 ◽  
Author(s):  
Dirk Herrmann ◽  
Friedrich Kessler ◽  
Ulf Klemm ◽  
Robert Kniese ◽  
Theresa Magorian Friedlmeier ◽  
...  

AbstractCIGS (Cu(In,Ga)Se2) thin-film solar modules on glass substrates are currently on the verge of commercialization. Entirely new application areas could be accessed with CIGS modules fabricated on thin and flexible non-glass substrates. Additionally, the roll-to-roll manufacturing of such flexible CIGS modules promises to be a low-cost production method. Different external Na supply methods and a vacuum-deposited buffer were investigated in this contribution, a sample of the challenges we face when modifying the standard, industrial CIGS module production process to the particular requirements of flexible substrates. Both metal foil substrates and polymer films are considered. Our excellent best results of above 14 % for single cells on titanium, more than 11% on polyimide, and around 7 % for modules on both substrates indicate our progress in developing flexible CIGS.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Young Yun Kim ◽  
Tae-Youl Yang ◽  
Riikka Suhonen ◽  
Antti Kemppainen ◽  
Kyeongil Hwang ◽  
...  

Abstract Driven by recent improvements in efficiency and stability of perovskite solar cells (PSCs), upscaling of PSCs has come to be regarded as the next step. Specifically, a high-throughput, low-cost roll-to-roll (R2R) processes would be a breakthrough to realize the commercialization of PSCs, with uniform formation of precursor wet film and complete conversion to perovskite phase via R2R-compatible processes necessary to accomplish this goal. Herein, we demonstrate the pilot-scale, fully R2R manufacturing of all the layers except for electrodes in PSCs. Tert-butyl alcohol (tBuOH) is introduced as an eco-friendly antisolvent with a wide processing window. Highly crystalline, uniform formamidinium (FA)-based perovskite formation via tBuOH:EA bathing was confirmed by achieving high power conversion efficiencies (PCEs) of 23.5% for glass-based spin-coated PSCs, and 19.1% for gravure-printed flexible PSCs. As an extended work, R2R gravure-printing and tBuOH:EA bathing resulted in the highest PCE reported for R2R-processed PSCs, 16.7% for PSCs with R2R-processed SnO2/FA-perovskite, and 13.8% for fully R2R-produced PSCs.


2017 ◽  
Vol 2 (5) ◽  
pp. 1600293 ◽  
Author(s):  
Kan Sato ◽  
Soichi Uchida ◽  
Shigetaka Toriyama ◽  
Suzushi Nishimura ◽  
Kenichi Oyaizu ◽  
...  

2003 ◽  
Vol 763 ◽  
Author(s):  
A. Kampmann ◽  
J. Rechid ◽  
A. Raitzig ◽  
S. Wulff ◽  
M. Mihhailova ◽  
...  

AbstractThe development of a low cost roll-to-roll production process for CIGS remains an attractive goal. In the present approach, the absorber is prepared by electrodeposition techniques, while molybdenum, copper or stainless steel (SS) are used as flexible substrates. Two electrodeposition routes are evaluated: sequential plating of Cu, In and Ga followed by Se evaporation is compared to simultaneous (= ternary) electrodeposition of Cu, In and Se. Ternary electrodeposition yields 7.5 % efficiency on stainless steel. The sequential process leads to 9.0 % cell efficiency on copper and on stainless steel substrates.


2016 ◽  
Vol 3 (4) ◽  
Author(s):  
Robert Hahn ◽  
Yujia Yang ◽  
Uwe Maaß ◽  
Leopold Georgi ◽  
Jörg Bauer ◽  
...  

Abstract This work focuses on a polymer based capacitive harvester which can be fabricated with help of roll-to-roll and low cost printing methods. In contrast to electrostatic MEMS based parallel plate transducers or dielectric elastomer systems here, the capacitance is varied as function of the mechanical load by changing of the top electrode area with help of an electrically conducting composite elastomer. In case of a composite elastomer electrode the maximum capacitance in compressed state does not only depend on the thickness and permitivity of the dielectric but first of all on the quality of the interface and the micro structure of the conducting phase in the composite electrode at the interface which was investigated by FEM Maxwell simulation. An equivalent circuit model is used to study the influence of the leakage current inside the dielectric and the bulk resistivity of the elastomer electrode. First experiments with state of the art polymer, thin film and novel printed dielectrics in contact with elastomer electrodes have been performed to prove the harvesting principle at low frequencies. Charges between 25 and 70 nAs per cm


Sign in / Sign up

Export Citation Format

Share Document