0.525μm>sup<2>/sup<6T-SRAM Bit Cell using 45nm Fully-Depleted SOI CMOS Technology with Metal gate, High K Dielectric and Elevated Source/Drain on 300mm wafers.

Author(s):  
A. Vandooren ◽  
C. Hobbs ◽  
M. Aminpur ◽  
G. Chabanne ◽  
A. Wild ◽  
...  
2013 ◽  
Vol 50 (5) ◽  
pp. 213-222
Author(s):  
C. Claeys ◽  
S. Iacovo ◽  
D. Kobayashi ◽  
A. Mercha ◽  
A. Griffoni ◽  
...  

2007 ◽  
Vol 995 ◽  
Author(s):  
Sagnik Dey ◽  
Se-Hoon Lee ◽  
Sachin V. Joshi ◽  
Prashant Majhi ◽  
Sanjay K. Banerjee

AbstractA MOSFET formed by a Si cantilever channel suspended between source/drain “anchors” wrapped all-around by high-κ dielectric and metal gate is demonstrated. The device shows excellent subthreshold characteristics and low leakage currents due to the fully depleted body and the gate-all-around architecture implemented with a high-κ dielectric and metal gate. At the same time this also allows a high drive current due to mobility enhancements arising from volume inversion of the cantilever channel such that a large ION/IOFF is achieved.


Author(s):  
Florent Torres ◽  
Eric Kerhervé ◽  
Andreia Cathelin ◽  
Magali De Matos

Abstract This paper presents a 31 GHz integrated power amplifier (PA) in 28 nm Fully Depleted Silicon-On-Insulator Complementary Metal Oxide Semiconductor (FD-SOI CMOS) technology and targeting SoC implementation for 5 G applications. Fine-grain wide range power control with more than 10 dB tuning range is enabled by body biasing feature while the design improves voltage standing wave ratio (VSWR) robustness, stability and reverse isolation by using optimized 90° hybrid couplers and capacitive neutralization on both stages. Maximum power gain of 32.6 dB, PAEmax of 25.5% and Psat of 17.9 dBm are measured while robustness to industrial temperature range and process spread is demonstrated. Temperature-induced performance variation compensation, as well as amplitude-to-phase modulation (AM-PM) optimization regarding output power back-off, are achieved through body-bias node. This PA exhibits an International Technology Roadmap for Semiconductors figure of merit (ITRS FOM) of 26 925, the highest reported around 30 GHz to authors' knowledge.


Sign in / Sign up

Export Citation Format

Share Document