Gate-All-Around (GAA) Fully Depleted (FD) Cantilever Channel MOSFET with High-k Dielectric and Metal Gate

2007 ◽  
Vol 995 ◽  
Author(s):  
Sagnik Dey ◽  
Se-Hoon Lee ◽  
Sachin V. Joshi ◽  
Prashant Majhi ◽  
Sanjay K. Banerjee

AbstractA MOSFET formed by a Si cantilever channel suspended between source/drain “anchors” wrapped all-around by high-κ dielectric and metal gate is demonstrated. The device shows excellent subthreshold characteristics and low leakage currents due to the fully depleted body and the gate-all-around architecture implemented with a high-κ dielectric and metal gate. At the same time this also allows a high drive current due to mobility enhancements arising from volume inversion of the cantilever channel such that a large ION/IOFF is achieved.

2019 ◽  
Vol 21 (23) ◽  
pp. 12494-12504 ◽  
Author(s):  
Evgenyi Yakimchuk ◽  
Vladimir Volodin ◽  
Irina Antonova

G-NMP is a high-k dielectric with a permittivity of 7–9, low leakage currents of 107–108 A cm−2, an ultralow charge of −(1–4) × 1010 cm−2 and a breakdown electric field strength of (2–3) × 105 V cm−1.


2008 ◽  
Vol 1071 ◽  
Author(s):  
Chia-Han Yang ◽  
Yue Kuo ◽  
Chen-Han Lin ◽  
Rui Wan ◽  
Way Kuo

AbstractSemiconducting or metallic nanocrystals embedded high-k films have been investigated. They showed promising nonvolatile memory characteristics, such as low leakage currents, large charge storage capacities, and long retention times. Reliability of four different kinds of nanocrystals, i.e., nc- Ru, -ITO, -Si and -ZnO, embedded Zr-doped HfO2 high-k dielectrics have been studied. All of them have higher relaxation currents than the non-embedded high-k film has. The decay rate of the relaxation current is in the order of nc-ZnO > nc-ITO > nc-Si > nc-Ru. When the relaxation currents of the nanocrystals embedded samples were fitted to the Curie-von Schweidler law, the n values were between 0.54 and 0.77, which are much lower than that of the non embedded high-k sample. The nanocrystals retain charges in two different states, i.e., deeply and loosely trapped. The ratio of these two types of charges was estimated. The charge storage capacity and holding strength are strongly influenced by the type of material of the embedded nanocrystals. The nc-ZnO embedded film holds trapped charges longer than other embedded films do. The ramp-relax result indicates that the breakdown of the embedded film came from the breakdown of the bulk high-k film. The type of nanocrystal material influences the breakdown strength.


2008 ◽  
Vol 57 (6) ◽  
pp. 3807
Author(s):  
Luan Su-Zhen ◽  
Liu Hong-Xia ◽  
Jia Ren-Xu ◽  
Cai Nai-Qiong

2009 ◽  
Vol 30 (3) ◽  
pp. 285-287 ◽  
Author(s):  
J. Huang ◽  
P.D. Kirsch ◽  
Jungwoo Oh ◽  
Se Hoon Lee ◽  
P. Majhi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document