Design and analysis of a self-sensing smart cutting tool integrated piezoelectric films for cutting force monitoring in ultra-precision machining

Author(s):  
Cai-Wei Xiao ◽  
Kai Cheng ◽  
Hui Ding ◽  
Shi-Jin Chen
2009 ◽  
Vol 407-408 ◽  
pp. 359-362 ◽  
Author(s):  
Takehisa Yoshikawa ◽  
Masayuki Kyoi ◽  
Yukio Maeda ◽  
Tomohisa Ohta ◽  
Masato Taya

Patterning of numerous microlenses on a surface improves the optical performance of components such as liquid crystal displays. A cutting method using a diamond tool is examined to fabricate a molding die that employs arbitrary array patterns to mold millions of microlenses. The present paper investigates machining of microlenses on the order of 2 kHz, using a piezo-actuated micro cutting unit and a synchronous control system of the cutting unit with an NC controller. Experiments using this system revealed that it is possible to machine a large number of microlenses on a molding die with high precision.


2012 ◽  
Vol 516 ◽  
pp. 595-599
Author(s):  
Kui Liu ◽  
Pei Ling Liu ◽  
Hu Wu ◽  
Kah Chuan Shaw

In this study, a computer numerical control (CNC) programming software platform for ultra precision machining of optical surfaces was developed based on an MS Windows application framework and openGL. Using cylindrical coordinates, the tool path can be generated based on the polar angle, radius and a linear coordinate of the Z-axis, as well as cutting tool nose radius compensation. A 3D simulation based on tool path generation was developed for machining verification, which largely reduces the oscillation of the machine during the ultra precision machining process. Ultra precision machining of an optical lens array was carried out on a 5-axis ultra precision machining centre using a single crystalline diamond cutter. The experimental results indicated that the oscillation effect can be largely reduced using the cutting tool path using a super steady machining strategy. This software platform is designed as a framework, where the capability and functions can be expanded by adding in more freeform surface packages.


2012 ◽  
Vol 516 ◽  
pp. 551-556
Author(s):  
Thanh Hung Duong ◽  
Kim Huyn Chul ◽  
Lee Dong Yoon

In recent years, there have been many studies concerning the effect of cutting parameters and tool parameters on the ultra precision machining of electroless nickel. However, there is no known reported study on the relationship between the cutting force and tool rake angle in ultra precision machining of electroless nickel. The objective of this study is to compare and investigate the cutting force with various rake angles for micro machining electroless nickel work pieces by theoretical analysis and experiment. Diamond tools with rake angles of-10o, 0o and 10o were used in the experiment. According to theoretical analysis, the tool with a 10o rake angle induces the smallest cutting force. However, the experiment showed that the tool with zero rake angle always gave us the smallest cutting force for all cutting speeds, cutting depths and pattern pitches.


Micromachines ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 63
Author(s):  
Taobo Gong ◽  
You Zhao ◽  
Yulong Zhao ◽  
Lukang Wang ◽  
Yu Yang ◽  
...  

On-line cutting force measurement is an effective way to monitor processing quality, improve processing accuracy, and protect the tool. In high-speed and ultra-precision machining, status monitoring is particularly necessary to ensure machining accuracy. However, the cutting force is very small in high speed and ultra-precision machining. Therefore, high-sensitivity cutting force sensors are needed. Current commercial cutting force sensors have defects such as large volume, low compatibility, and high price. In particular, the sensitivity of cutting force sensor needs to be improved for high-speed and ultra-precision machining status monitoring. This paper provides a possible solution by embedding the sensor in the tool and selecting sensitive materials with high piezoresistive coefficient. In this paper, the structural design of the sensor and the fabrication of the sensitive material SiAlCO ceramic are carried out, and then the sensor is packaged and tested. The test results show that the cutting force sensor’s sensitivity was as high as 219.38 mV/N, which is a feasible way to improve cutting force sensor’s compatibility and sensitivity.


Author(s):  
W. Y. H. Liew ◽  
X. Ding

Ultra-precision machines are widely used to turn aspherical profiles on mould inserts for the injection moulding of optical lenses. During turning of a profile on a stainless steel mould insert, the cutting speed reduces significantly to 0 as the cutting tool is fed towards the center of the machined profile. This paper reports on experiments carried out to study the wear of uncoated, PVD-coated and CVD-coated carbide tools in the ultra-precision machining of STAVAX (modified AISI 420 stainless steel) at low speeds.


2006 ◽  
Vol 532-533 ◽  
pp. 209-212 ◽  
Author(s):  
Ming Jun Chen ◽  
Ying Chun Liang ◽  
Jing He Wang ◽  
Xin Zhou Zhang

A theoretical analysis on the variation regularity of cutting force caused by the material anisotropy with different orientation of KDP is analyzed firstly; influence and regularity of the variation are obtained. Analysis result shows that the crystal anisotropy of KDP is an important factor in obtaining the super-smooth surface. Then experiments are realized on the machine tool, results afford the variation regularity of cutting force caused by the anisotropy with different orientation of KDP, which certifies the correctness of this theoretical analysis. For ultra-precision machining of the KDP at large negative rake diamond cutter (-45°) and the optimal parameters, the super-smooth surface (rms is 8.702 nm, Ra is 6.895 nm) can be obtained on the plane (001).


2011 ◽  
Vol 5 (3) ◽  
pp. 320-325 ◽  
Author(s):  
Naohiko Sugita ◽  
◽  
Kazuhiko Nishioka ◽  
Mamoru Mitsuishi

This paper proposes ultra-precision machining of tungsten alloy maximizing burnishing between the cutting tool and workpiece during cutting by combining strengths of the crystal grain and binder phase. Turning experiments conducted using workpieces of tungsten-based alloys 50 mm in diameter and 10 mm thick produced high-quality surface roughnessRzof 0.13 µm, achieved on a CNC lathe.


Sign in / Sign up

Export Citation Format

Share Document